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Abstract: Slow-moving, chronically destructive landslides are projected to grow in number globally in response to
precipitation increases from climate change, and land disturbances from wildfire, mining and construction. In the Cincinnati
and northern Kentucky metropolitan area, USA, landslides develop in colluvium that covers the steep slopes along the Ohio
River and its tributaries. Here we quantify elevation changes in a slow-moving colluvial landslide over 14 years using county-
wide lidar, uncrewed aerial vehicle (UAV) structure-from-motion (SfM) surveys and a UAV lidar survey. Because the
technology and quality differ between surveys, the challenge was to calculate a threshold of detectable change for each survey
combination. We introduce two methods; the first uses propagated elevation difference errors and the second back-calculates
the individual survey errors. Thresholds of detection range from ±0.05 to ±0.20 m. Record rainfall in 2011 produced the largest
vertical changes. Since then, the landslide toe has continued to deform, and the landslide has doubled its width by extending
into a previously undisturbed slope. Although this study presents a technique to utilize older datasets in combination with
modern surveys to monitor slow-moving landslides, it is broadly applicable to other studies where topographic data of differing
quality are available.
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Slow-moving landslides, which move at rates from just a few
millimetres to several metres per year (Lacroix et al. 2020b) are
chronically destructive and permanently damage property, infra-
structure and agricultural land (Mansour et al. 2011; Nappo et al.
2019; Lacroix et al. 2020a). Although rarely deadly themselves,
they can be precursors to fast-moving catastrophic landslides
(Palmer 2017; Handwerger et al. 2019) and thus provide a valuable
opportunity to study landslide processes prior to more rapid
movement. The development of slow-moving landslides may result
from perturbations to a steadily creeping slope (Chau 1999). Slow-
moving landslides often remain inactive for years or decades, only
to experience periods of rapid movement in response to precipita-
tion, human disturbance or earthquakes (Lacroix et al. 2020b). With
increases in precipitation owing to climate change, and land
disturbance owing to wildfire, landslide activity is expected to
increase in the USA (Leshchinsky et al. 2017; Mirus et al. 2017;
Coe et al. 2018), and globally the number of landslides triggered by
human activity such as construction and mining is increasing
(Froude and Petley 2018). Within the USA alone, they are estimated
to cost billions of dollars per year in economic losses (US
Geological Survey 2005; Crawford 2014; Burns et al. 2017).

The purpose of the research we describe in this paper was to
document and better understand decadal-scale spatial and temporal
variations in the activity of a slow-moving landslide in the
Cincinnati and northern Kentucky (USA) area, which necessarily
included the development of an approach to integrate topographic
data collected using different technologies over a period of years.
Thus, this paper presents a method in a case study. Landslides
throughout the area are well-known hazards but have not been

studied intensively for nearly 30 years (Fleming and Taylor 1980;
Haneberg 1991; Baum 1994; Fleming and Johnson 1994; Haneberg
and Gokce 1994; Riestenberg 1994; Baum and Johnson 1996;
Crawford 2012, 2014; Crawford and Bryson 2018; Glassmeyer and
Shakoor 2021); perhaps because the landslides, although numerous
and costly, are not deadly, and are treated largely as a continung
maintenance problem. Thus, there are no published studies of the
landslides incorporating modern remote sensing methods such as
those we describe in this paper. The previous studies were also
typically limited to a year or two in duration, so they did not provide
information about decadal patterns of activity. This paper provides
the first documentation of decadal Cincinnati and northern
Kentucky area landslide movement based upon modern remote
sensing techniques.

We describe a method to quantify the threshold of detectable
change between digital elevation models (DEMs) produced using
various remote sensing technologies. Here we use the US
Geological Survey (USGS) definition of a DEM, which is a bare-
earth surface that excludes vegetation, buildings and other surface
objects. This is equivalent to a digital terrain model (DTM), as
opposed to a digital surface model (DSM), which includes all
surface features. After describing the method, we then use it to
document changes in a slow-moving landslide near Taylor Mill in
northern Kentucky over a 14 year period using a combination of (1)
regional airborne lidar coverage acquired by government agencies
before our study began and (2) site-specific structure-from-motion
(SfM) and uncrewed aerial vehicle (UAV)-lidar surveys acquired as
part of our work. To calculate thresholds of detectable change for
each pair of DEMs, we used the statistics of noise for the difference
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map in areas outside the landslide, where no elevation change is
reasonably inferred to have occurred. Elevation changes within the
landslide are then measured relative to these no-change areas. As we
explain, this is a pragmatic approach useful in many cases of
practical interest for which control points are limited or non-
existent. We found that combinations of surveys yield a threshold of
detection of ±0.05 to ±0.20 m, depending on the combination, and
that vertical changes in the landslide above the threshold of
detection were found for every combination of surveys, even as
short as SfM surveys performed 2 weeks apart. This approach is
broadly applicable to other study areas with topographic and
bathymetric data acquired using various technologies and of
differing quality. Thus, this technique provides a method to utilize
older survey datasets that may be regional scale and lower resolution
in combination with site-specific high-resolution datasets to detect
real elevation change over time.

We conclude that whereas the most significant movement of the
Taylor Mill landslide, which formed on a slope altered by human
activity, was triggered by record precipitation, the landslide has
continued to move and expand laterally onto a previously unaltered
slope.With climate change increasing precipitation regionally (EPA
2016), it is expected that landslide activity in the region will only
increase, making the monitoring of slow-moving landslides a
critical part of landslide mitigation.

Landslide characteristics and geological setting

The Cincinnati, Ohio and northern Kentucky region (Fig. 1) is
plagued by slow-moving landslides that regularly threaten infra-
structure (Mirus et al. 2017). For example, several 2019 landslides
occurring along a major road cost over $17 USD million and took
2 years to remediate (City of Cincinnati Transportation and
Engineering 2019; Knight 2021). Landslides typical of the region
include slow-moving debris slides, generally <2 m thick, that form
in the colluvium, unconsolidated material weathered from the
underlying bedrock, which covers the steep slopes along the Ohio
River and tributary valleys (Varnes 1978; Fleming and Johnson
1994); and deeper, slow-moving slumps that occur on flatter slopes

in thick colluvium, glacial deposits or anthropogenic fill (Baum and
Johnson 1996). The colluvium consists of weathered rock fragments
ranging in size from granules to tabular limestone boulders in a
clayey matrix. The colluvium most susceptible to landslides is
derived from horizontally bedded shale and limestone of the
Ordovician Kope Formation (Fig. 1), which is composed primarily
of weak illitic shale that slakes easily when exposed to water
(Koralegedara and Maynard 2017). The landslide chosen for this
study, referred to as the Taylor Mill landslide (39.034234,
−84.512587), is a translational debris slide that has been active
since at least 2003 and has affected a slope and roadway leading to
an apartment complex (Fig. 2). Attempts to mitigate the slide have
included regrading the slope and rebuilding part of the roadway
(Fig. 3). In 2012 the debris slide measured c. 45 m wide and 70 m
long and by 2021 it had more than doubled its width. If we assume a
constant thickness of 1.5 m, the volume of the landslidewas initially
c. 4500 m3 and has expanded to 11 500 m3.

Methods

Change detection

Aerial and satellite platforms have made it feasible to detect changes
in slow-moving landslides with greater spatial and temporal
resolution than with traditional methods such as field-based
mapping or repeated surveys of benchmarks (Turner et al. 2015;
Schulz et al. 2017; Okyay et al. 2019; Lacroix et al. 2020b). In
particular, UAV-based lidar and SfM photogrammetry have made
data acquisition less expensive and easily repeatable over short time
periods (Jaboyedoff et al. 2012). Because slow-moving landslides
may be active for many decades, older elevation datasets (e.g.
topographic maps, Shuttle Radar Topography Mission (SRTM) or
regional lidar) can also provide valuable past landslide information,
albeit at lower spatial and temporal resolutions than site-specific
SfM or lidar surveys.

A critical challenge in the study of elevation change detection,
including slow-moving landslides, is addressing signal-to-noise
ratios (Wheaton et al. 2009; Schaffrath et al. 2015; James et al.

Fig. 1. Location of the Taylor Mill landslide study area in northern Kentucky (39.034234, −84.512587). Cincinnati, Ohio, lies directly across the Ohio
River from the study area.
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2017). Frequently monitored landslides often register changes so
small that the elevation changes may not be greater than the survey
errors, referred to as noise. There are many potential sources of
DEM noise, such as the incomplete density of observations,
processing errors, measurement errors and errors introduced by the
interpolation of point cloud data (Wechsler 2007), all of which will
propagate through derivative maps and calculations (Holmes et al.
2000; Haneberg 2006, 2008). Survey noise can be quantified for
SfM surveys (Clapuyt et al. 2016; Goetz et al. 2018) and elevation

data acquired from various spaceborne and airborne platforms
(Haneberg 2006, 2008; Gonga-Saholiariliva et al. 2011). However,
the noise for older elevation datasets may be unknown. Thus,
combining surveys acquired with different technologies to detect
decadal change in a landslide can be a challenge. Few studies have
directly used multiple technologies acquired at different times to
detect change (e.g. Warrick et al. 2019), and quantifying the
minimum detectable change possible using combinations of
technologies has rarely been explored (e.g. Warrick et al. 2017).

Fig. 2. Landslide in Taylor Mill,
Kentucky. Oblique view of slide
generated from 11 March 2019 drone
UAV imagery. The scarp has exposed the
road foundation, and the toe has advanced
into the road leading to an apartment
complex. The two-lane road is c. 6 m
wide. Photograph of the scarp was taken
in April 2018; photograph of the toe was
taken in March 2022.

Fig. 3. Sequence of images that illustrate the changes to the slope (Taylor Mill, KY, 39.034234 −84.512587) between 2000 and 2021. (a) Image from
October 2000 showing the driveway and vegetated slope. (b) Image from August 2005 showing some bare patches on the previously vegetated slope.
(c) Image from June 2006 showing the regraded slope. (d) Image from 2008 showing a bare patch at the top of the slope that may represent added fill.
(e) Image from July 2010 showing added fill and the reconstructed driveway at the top of the slope. (f ) Image from March 2021 showing drainage from the
toe of the landslide into the driveway. Source: Google Earth image ((a), (b) US Geological Survey; (c) Maxar Technologies; (d) USDA/FPA/GEO).
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Although change detection is optimally based on comparing
results obtained from remote methods with surveyed monument
locations on the ground, it is not always practicably possible. For
example, the study area may be inaccessible to surveyors,
monuments may be vandalized or accidentally destroyed between
surveys, or a study may use historical data that predate the
installation of survey monuments. In our case, the first two lidar
datasets were acquired 12 and 7 years, respectively, before our work
at the TaylorMill site began and no historical surveymonument data
were available. To compensate for the lack of survey monuments,
we expand upon an approach based upon the statistics of inferred
areas of no change proposed by Haneberg (2017), whereby we
quantify the noise in areas outside the landslide where no elevation
change has occurred, to calculate the threshold of detectable change.
Elevation changes in the landslide above this threshold are
measured relative to the no-change areas outside the landslide. If
the no-change area is indeed moving, then the calculated changes in
the landslide are not absolute. However, they will still be very useful
for understanding the movement of the landslide.

We measured changes in the landslide surface between 2007 and
2021 using differences between pairs in a series of (1) DEMs from
county-wide airborne lidar surveys conducted in 2007 and 2012, (2)
SfM DEMs derived from photographs acquired by a UAV in 2019
and 2020 and (3) a lidar DEM created from a UAV-lidar point cloud
acquired in 2021. Each DEM was adjusted to the 2012 lidar DEM
by removing coherent noise in the form of bias (an elevation
difference of the same magnitude across the map area) and tilt
(a systematic change in elevation difference across the map area) as

described in detail below. The 2012 lidar dataset was chosen instead
of the 2007 lidar dataset because it has a denser point cloud and
fewer obvious artefacts compared with the 2007 data. Once bias and
tilt between datasets were removed, we calculated the threshold of
detectable elevation change for each pair of DEMs using the
statistics of errors in areas outside the landslide where no elevation
change is thought to have occurred using two methods. The
methods are summarized in Figure 4 and described in detail in the
following paragraphs.

Data acquisition

The county-wide lidar data and aerial photographs used in our analysis
were obtained during leaf-off conditions in the winter of 2007 and
2012 (Table 1). The 2007 lidar data covering northern Kentucky were
obtained by the Northern Kentucky Planning Commission, and have
an average point spacing of 1.6 m. The 2012 lidar data and
photographs were acquired as a part of the Kentucky Aerial
Photography and Elevation Data Acquisition program (KYAPED).
The 2012 lidar data were collected at an average of 0.68 m point
spacing or better and a required vertical accuracy of ±0.15 m or better.
The 2012 aerial photographs have 0.15 m pixels. The 2012 and 2007
lidar data were originally delivered in Kentucky state plane coordinates
in feet; we projected them from state plane coordinates to UTM Zone
16N coordinates in metres and converted the vertical units from feet to
metres. The Kentucky state plane and UTM coordinate systems both
use the same horizontal datum (NAD 1983) and ellipsoid (GRS 1980),
thus errors introduced by this projection are negligible.

Fig. 4. Flowchart summarizing the data
acquisition and processing of the county-
wide lidar, UAV-SfM imagery and UAV-
lidar; the corrections to the DEMs for bias
and tilt; and the methods used to estimate
the threshold of detectable change.
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We acquired digital aerial photographs for the SfM surveys in
2019 and 2020 using Mavic Phantom 2 and Mavic Pro UAVs.
Flights were planned with DroneDeploy software (Hinge et al.
2019) to ensure that the images had 75% front overlap and 70%
side overlap.

Our UAV-lidar data were acquired using a Matrice 600 Pro
UAV and Yellowscan Surveyor lidar system in December 2020.
Flights were planned using UgCS software to follow the
topography at an elevation of 40 m. The lidar flight extended
farther to the south than the 2019 and 2020 SfM surveys to include a
heavily vegetated area where the SfM surveys did not produce
usable results.

Data processing

The photographs for the SfM survey were processed to produce
point clouds using Agisoft Metashape (James et al. 2017), and
georeferenced using 19 easily identifiable ground control points
(GCPs) in areas outside the landslide where no change was inferred
to have occurred. GCPs were selected using the coordinates of
reference points such as sewer grates and light poles visible in the
KYAPED 2012 aerial photographs and the corresponding eleva-
tions from the 2012 lidar-derived DEM. After image alignment, the
total residual error for the GCPs is <0.02 m. Point clouds were
classified inMetashape using the Classify Ground Points tool, using
a maximum angle of 15°, maximum distance of 0.5 m and cell size
of 50 m. The SfM point clouds have an average point spacing of
0.040–0.046 m (Table 1).

The UAV lidar data were post-processed using local
Continuously Operating Reference Station positioning data to
improve their spatial accuracy (Olsen et al. 2013). Point elevations
were further improved using strip adjustment and classified into
ground and non-ground points using Yellowscan CloudStation
software. The point cloud has an average point spacing of 0.049 m.

Point clouds from the county-wide lidar, SfM and UAV-lidar
were processed using ArcGIS to produce 0.1 m DEMs using natural
neighbour interpolation, a technique used to construct a surface
from irregularly distributed points, to fill voids (Sibson 1981).
Although interpolating the two county-wide lidar DEMs to 0.1 m
does not add information or increase the resolution of features, it
does facilitate comparison with the more detailed SfM and UAV-
lidar DEMs. Although geomorphological change can be quantified
from digital elevation data using grid-based (DEM) or point cloud
comparisons (e.g. Qin et al. 2016; Okyay et al. 2019), we used
gridded DEMs in this research because calculating DEM differ-
ences is easily performed using map algebra within GIS software
and has a long history of successful application in geomorpho-
logical change detection studies (e.g. Okyay et al. 2019). An area of
interest (AOI) was used to define the processing extent so that all
DEM grids would be aligned. Without this step, the DEM grid
would originate at the southeasternmost point of each point cloud,
and thus the grid for each dataset would be slightly different. All
datasets are georeferenced in UTM Zone 16N, EPSG 26916.

Noise maps

Coherent noise in the forms of bias and tilt between each DEM and
the 2012 DEM was visually assessed using noise maps. The 2012
DEM was chosen as the surface that all other DEMs were corrected
to because it was better quality than the 2007 DEM, and also had
high-quality aerial photographs taken at the same time, and thus
allowed ground control points to be selected for processing the SfM
data. Noise maps were symbolized to show apparent elevation
differences only in the range of ±0.20 m to visualize just the noise in
areas where no real elevation change between datasets is expected
(no-change areas). The range of ±0.20 m was chosen because it
produces a continuous display of noise values across the map area.
The noise was then quantified by sampling the distribution of noise
in the road above and below the landslide.

Correction for bias and tilt

Each of the DEMs we used required some correction of either bias
(between lidar DEMs) or tilt (between SfMDEMs). Ideally, themean
elevation change in a no-change area should be zero; thus, a non-zero
mean indicates a bias between the datasets. This bias was removed by
adding or subtracting the calculated mean value from the DEM being
corrected. To adjust the slight tilt observed in the SfM DEMs, the
apparent elevation difference for each of a series of 30 points along
the road above and below the landslidewas used to create a correction
surface using the Topo-to-Raster tool in ArcGIS, which uses an
iterative finite difference interpolation technique. This correction
surface was then subtracted from the DEM being adjusted to remove
the tilt. The corrections for bias and tilt remove the coherent noise and
the remaining random noise is then used to calculate the threshold of
detectable change between the two datasets.

Threshold of elevation change detection

When two elevation surveys are noisy and are then combined to
calculate an elevation change, the errors are larger than the sum of
the errors in each individual survey, which is often referred to as the
propagation of errors (Birge 1939). Previous researchers have used
probabilistic geomorphological change detection thresholds based
upon the propagation of elevation errors from each of the two DEMs
being compared (Brasington et al. 2000; Lane et al. 2003;
Schaffrath et al. 2015). However, there may be cases of practical
interest in which the individual DEM elevation errors are not
available. For example, it is generally not feasible to directly
determine DEM errors in deep-water seafloor change detection
studies based upon repeat multibeam echosounder surveys (e.g.
Haneberg 2018). Likewise, it is not unusual to encounter situations
such as the one we describe in this paper, in which some of the
DEMs were produced before our research began. Even if quality
assurance statistics are available for previous topographic surveys,
those data are typically collected in unobstructed, smooth and flat
areas that are not representative of heavily vegetated, rough and
steep landslide terrain. Such quality assurance error statistics can be
misleading because DEM errors in areas relevant to landslide
studies can easily be an order of magnitude larger than those
collected for quality assurance purposes (e.g. Haneberg 2006,
2008). To account for these difficulties, we use two methods that
combine error propagation theory with geomorphologically rea-
sonable assumptions about areas in which no change is expected to
have occurred. The elevation changes in the landslide that we report
are relative to the no-change areas, which we assume have an
elevation change of zero.

Both of our methods are based upon estimates of the propagated
elevation difference error rather than the individual DEM elevation
errors. This requires geomorphologically informed selection of one

Table 1. Methods and dates of data acquisition

Date Method
Referenced in
paper as

Average point
spacing (m)

Winter 2007 County-wide lidar 2007 1.6
Winter 2012 County-wide lidar 2012 0.68
11 March 2019 UAV-SfM 2019 0.046
26 March 2019 UAV-SfM 2019, 2nd survey 0.044
3 March 2020 UAV-SfM 2020 0.040
15 December 2020 UAV-lidar 2021 0.049
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or more areas in which significant change can be reasonably
inferred not to have occurred. We refer to these as no-change areas.
Areas in the road above and below the landslide were used as no-
change areas because therewere nomeasurable elevation changes in
these areas between 2007 and 2021 owing to either the nearby
landslide or alterations to the road such as repaving. The propagated
elevation difference error is estimated by calculating the mean and
standard deviation of the DEM difference values within the no-
change area(s) or, if the area is large, a subset of the values within
the no-change area(s). In an ideal situation, the no-change data
would be noise- or error-free; both the mean and standard deviation
would be zero. Non-zero results for a no-change area are thus an
estimate of the propagated elevation error. The mean, or bias, is
removed to create a zero-mean no-change dataset. The remaining
non-zero standard deviation, sDz, is an estimate of the total
propagated elevation error if the no-change inference is valid. The
standard deviation of the propagated elevation errors is related to the
individual DEM elevation errors by

s2
Dz ¼ s2

z, t1 þ s2
z, t2 (1)

where sz,t1 and sz,t2 are the standard deviations of the elevation
errors in DEMs representing times t1 and t2, respectively (e.g.
Hildebrand 1987; Brasington et al. 2000; Lane et al. 2003;
Schaffrath et al. 2015). Next, we calculate the threshold value of
detectable change using the propagated elevation difference error
using two methods. Method I uses the statistics of errors from the
difference map, whereas Method II uses back-calculated error
estimates for each individual survey.

Method I: difference map errors

We assume that the DEM difference errors are normally distributed
with a zero mean and heuristically adopt a threshold of +2sDz, so
that the probability of a calculated elevation change being noise is
<0.05 (Fig. 5a). This is essentially the same approach as taken by
Brasington et al. (2000), Lane et al. (2003) and Schaffrath et al.
(2015) except that equation (1) allows us to use the no-change area
estimate of propagated error rather than the individual DEM errors.
We also round the multiplier up from 1.96 to two for convenience.

Method II: individual DEM errors

We calculate a threshold value that must be exceeded for the overlap
between the two DEM error distributions to remain below a
specified significance level, α, as shown schematically in Figure 5b.

If both component error distributions are known, α can be calculated
numerically for any kind of distribution. For thework we describe in
this paper, neither distribution is known. If it is reasonable to
assume that both distributions are normal and have the same
standard deviations, sz ¼ sz,t1 ¼ sz,t2, either of the cumulative
distribution functions can then evaluated at a value of one-half the
threshold and the result doubled to obtain

Dzcrit ¼ 23=2sz erfc
�1(a) (2)

where Dzcrit is the elevation difference threshold that must be
exceeded to ensure the overlap between the two distributions is less
than α, sz is the standard deviation of the individual DEM errors,
and erfc−1 is the inverse complementary error function. For a normal
distribution of errors with a mean of zero and a standard deviation of

1=
ffiffiffi
2

p
, the error function erf z ¼ 2

2p
p

ðz

0

e�t2 dt gives the probability

that the error lies within ±x; the inverse complimentary function
erfc−1 uses the probability to find ±x. Assuming that both DEM
error standard deviations are equal, equation (1) can be rearranged to

yield sz ¼ sDz=
ffiffiffi
2

p
and equation (2) can be rewritten in terms of

the difference map standard deviation rather than the individual
DEM standard deviation:

Dzcrit ¼ 2sDzerfc
�1(a): (3)

For the significance level α = 0.05, or 95% confidence level, which
is commonly used in many scientific studies, Dzcrit ¼ 2:77sDz.
Once the threshold values for each DEM combination are
calculated, threshold maps are symbolized with a neutral colour
representing values under that threshold.

Magnitude of vertical change

We use the magnitude of vertical change between the corrected
DEMs integrated over a specified sample in the centre of the
landslide area to quantify the amount of vertical surface deformation
between each pair of DEMs. The magnitude of vertical change is the
sum of the absolute value of the maximum change in each 0.1 m by
0.1 m cell in the sample area. We did not conduct a volume analysis
on the landslide because unknown volumes of material have been
added to and removed from the slide. An unknown volume of fill
was placed on the top of the slope during road reconstruction
between 2007 and 2012. As the landslide has repeatedly run out
over the roadway, the toe has been excavated multiple times,
removing an unknown volume of material.

(a) (b)

Fig. 5. An illustration of the two methods to estimate the threshold of detectable change. (a) Method I uses the propagated errors from the difference map to
estimate the threshold. (b) Method II uses an estimate of the individual DEM errors to calculate the threshold value that must be exceeded for the overlap
between the two individual DEM error distributions to remain below a specified significant level.
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Results

DEM corrections

Each dataset required correction to vertically align it with the 2012
DEM (Fig. 6, Table 2). The 2007 county-wide lidar DEM and the
2021 UAV-lidar DEM were corrected for a bias of 0.057 and
0.058 m, respectively. All three SfMDEMswere corrected for tilt of
up to ±0.21 m across the map area. Figure 6 shows examples of
noise maps and noise distributions in no-change areas outside the
landslide. Figure 6a and b shows an example of the noise map
before and after correction for bias between the 2012 county-wide
lidar DEM and the 2021 UAV-lidar DEM. Figure 6c and d shows an
example of the noise map and noise distribution before and after
correction for the tilt between the 2019 SfM DEM and the 2012
lidar DEM.

Threshold of detectable change

Table 2 shows thresholds of detectable change prior to and after
corrections for bias and tilt for all DEM combinations. In 10 of the
15 combinations, the threshold of detectable changewas reduced by
up to 0.20 m after corrections; in two combinations, the threshold of

detectable change increased by <0.01 m, and in three combinations,
there was no change in the threshold value. After corrections, the
threshold of detectable change ranges from ±0.05 to ±0.20 m, with
the largest thresholds resulting from combinations that include the
2007 county-wide lidar DEM.

The threshold of detectable change calculated using Method I is
always inherently smaller than that for Method II. For our datasets,
the difference between the two methods ranges between 0.02 and
0.09 m, depending on the combination (Table 2). Threshold maps
do not change underlying data, just the way it is symbolized, with a
neutral colour representing elevation change under the threshold
value. Figure 7 shows an example of the threshold maps resulting
fromMethod I (Fig. 7a) and Method II (Fig. 7b) applied to the 2019
and 2020 SfM DEMs. Method I results in a calculated threshold of
0.05 m, and Method II results in a threshold of 0.07 m.

Vertical changes in the landslide surface

Real elevation change in the landslide is detected in every
combination of surveys, including those flown just 2 weeks apart.
Elevation changes in the landslide are measured relative to the no-
change areas, which have an assumed elevation change of zero.

(a) (b)

(c) (d)

Fig. 6. Examples of noise maps and noise distributions in no-change areas above and below the landslide before and after corrections for bias and tilt. (a)
Noise map and distribution showing bias between the 2012 county-wide lidar DEM and the 2021 UAV-lidar DEM. (b) Noise map and distribution after the
correction. It should be noted that there is still noise in the vegetated areas below the slide, and linear features in the mowed grassy area on the other side of
the driveway. (c) Noise map and distribution showing a tilt of the 2019 SfM DEM of up to ±0.20 m dipping to the NW. (d) Noise map and distribution
after correction for tilt.
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Figure 8 shows a sequence of maps showing elevation changes in the
landslide between 2007 and 2021 using a gradational scale. Elevation
profiles that show the progressive elevation change between 2007 and
2021 in the landslide are shown in Figure 9. Observations of elevation
change in the landslide are summarized as follows.

• Between 2007 and 2012 (Figs 8a and 9a), a landslide c. 45 m
wide and 70 m long developed in fill that had been placed on
the slope. During this time, the head of the landslide dropped
up to 2.2 m while the toe rose up to 1.3 m.

• Between 2012 and 2019 (Figs 8b and 9b), most of the
landslide continued to change in elevation. The top half of

the slide shows some bands of elevation gain and loss that
parallel the slope contours, whereas the toe mostly gains in
elevation up to 1.2 m. In addition, a new area to the south
lowered in elevation up to 1.2 m,although the lateral extent is
obscured by vegetation and the topography could not be
determined from the SfM data.

• Between 2019 and 2020 (Figs 8c and 9c), the top half of the
slide again shows parallel bands of small elevation gains and
losses. Larger elevation changes are seen in the lower half of
the slide, including the excavation of the toe near the road,
which lowered the elevation there up to 1.8 m, whereas the
northern part of the toe gained elevation of up to 0.9 m.

Table 2. Results of noise analysis and the thresholds of elevation change detection

First DEM
Second
DEM

Noise before
correction (m)

Threshold before correction (m) Noise after
correction (m)

Threshold after correction (m)

Magnitude of
vertical change in
landslide (×102 m)

Method 1 (±2σ) Method 2 (Dzcrit) Method 1 (±2σ) Method 2 (Dzcrit)

2007 2012 −0.057 ± 0.062 ±0.12 ±0.17 0.000 ± 0.062 ±0.12 ±0.17 708
2019 −0.027 ± 0.068 ±0.14 ±0.19 −0.004 ± 0.066 ±0.13 ±0.18 860
2019 2nd survey −0.051 ± 0.095 ±0.19 ±0.26 −0.017 ± 0.073 ±0.15 ±0.20 853
2020 0.012 ± 0.064 ±0.13 ±0.18 0.003 ± 0.061 ±0.12 ±0.17 916
2021 −0.003 ± 0.068 ±0.14 ±0.19 −0.004 ± 0.068 ±0.14 ±0.19 886

2012 2019 0.034 ± 0.033 ±0.07 ±0.09 0.000 ± 0.031 ±0.06 ±0.09 243
2019 2nd survey 0.073 ± 0.108 ±0.22 ±0.30 −0.013 ± 0.043 ±0.09 ±0.12 235
2020 0.074 ± 0.027 ±0.06 ±0.08 0.007 ± 0.025 ±0.05 ±0.07 294
2021 0.058 ± 0.026 ±0.05 ±0.07 0.000 ± 0.026 ±0.05 ±0.07 300

2019 2019 2nd survey 0.039 ± 0.118 ±0.24 ±0.33 −0.012 ± 0.045 ±0.09 ±0.13 7
2020 0.039 ± 0.037 ±0.08 ±0.10 0.007 ± 0.026 ±0.05 ±0.07 119
2021 0.023 ± 0.037 ±0.08 ±0.10 0.000 ± 0.039 ±0.08 ±0.11 155

2019 2nd survey 2020 0.064 ± 0.086 ±0.17 ±0.24 −0.020 ± 0.047 ±0.09 ±0.13 169
2021 0.047 ± 0.086 ±0.17 ±0.24 0.012 ± 0.050 ±0.10 ±0.14 147

2020 2021 −0.016 ± 0.033 ±0.07 ±0.09 −0.007 ± 0.036 ±0.07 ±0.10 105

Results of noise analysis and the thresholds of elevation change detection prior to and after corrections using Method I and Method II, and the sum of elevation change in the landslide
for each survey combination. Each DEM was corrected for tilt or bias so that areas outside the landslide matched the 2012 county-wide lidar DEM. The first DEM column is the older
dataset, and the second DEM is the more recent dataset.

Fig. 7. Threshold maps produced for the same DEM combination (the 2019 and 2020 SfM DEM) using Method I and Method II. (a) Threshold of 0.051 m
calculated using Method I. (b) Threshold of 0.071 m calculated using Method II. Noise in the road and mowed area is reduced using either method, whereas
there are more notable differences in the vegetated area below the slide and within the slide itself.
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• Between 2020 and 2021 (Figs 8d and 9d), elevation changes
of up to 1.1 m are seen in the lower half of the landslide,
whereas the upper half of the landslide appears to have little
to no vertical change.

• Difference maps showing the elevation change between lidar
DEMs in 2012 and 2021 (Fig. 8e) allow a view of the ground
beneath the vegetation and show that the landslide has
extended to the south by at least 60 m along the lower portion

Fig. 8. Elevation change maps using a gradational scale to show differences between (a) 2007 (county-wide lidar) and 2012 (county-wide lidar), (b) 2012
(county-wide lidar) and 2019 (SfM), (c) 2019 (SfM) and 2020 (SfM), (d) 2020 (SfM) and 2021 (UAV-lidar), and (e) 2012 (county-wide lidar) and 2021
(UAV-lidar).
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of the slope. Gullies can be observed above, below and across
the body of the landslide. Other areas of smaller elevation
changes are seen to the north of the slide boundary, and in the
mid-slope area above the southern part of the slide.

The sum of the positive elevation gains and the absolute value of
negative elevation losses inside the landslide sample area for each
combination of DEMs is shown in Figure 10, along with annual
rainfall between 2005 and 2021. The rate of elevation change is
greatest between 2007 and 2012, which coincides with the annual
rainfall in 2011 of 1.86 m, the greatest annual rainfall since
precipitation records have been collected starting in 1871. The rate
of elevation change is also greater between 2019 and 2021. When
positive and negative elevation changes are viewed individually
(Fig. 10c and d), the rate of elevation gain is similar in all
combinations, whereas the rate of elevation loss is greatest between
2007 and 2012, and between 2019 and 2021.

Discussion

Threshold of detection

Establishing thresholds of detectable change is important for two
reasons. First, it provides a way to utilize older or noisy low-
resolution datasets in combination with more recent higher-
resolution datasets to detect real change and offer information
about the behaviour of slow-moving landslides over many years to
decades. In this study, without the 2007 data, one might recognize a
landslide from the topographic signature in the 2012 data, but we
would not have information about the timing or magnitude of the
change in the landslide. The methods of calculating the threshold
presented here are broadly applicable to a wide range of topographic
and bathymetric change detection problems using combinations of
DEMs from different sources and for which limited control points
may be available. Using the statistics of noise in no-change areas
from the difference map, one can simply use Method I to calculate
the threshold of detectable change. Method II, which always
produces a higher threshold than Method I, can also be used;
however, Method II uses the assumption that the standard deviation
of noise is equal for both datasets. If the older data have a markedly
different standard deviation of errors, equation (1) can be used to

calculate the propagated error, which would require knowledge or
estimation of the standard deviations, or at least the ratio of standard
deviations for each dataset. This propagated error can then be used
in equation (3) to calculate the threshold of detectable change.

Second, calculating a threshold of change can allow for more
reliable and cost-effective monitoring of continuing changes in
slow-moving landslides. In this study, annual changes to the
landslide are easily detectable with either SfM or lidar, and the
slight corrections we demonstrated here to reduce the threshold of
detection may not even be necessary to accomplish this. However,
in the case where critical infrastructure may be damaged by a slow-
moving landslide, monitoring for small changes may be a crucial
mitigation strategy; thus, a technique to quantify and minimize the
threshold of detectable change, including making the small
corrections for tilt and or bias, is important.

An example of a small change in the landslide that is detectable
only after making corrections and using the resulting threshold is
provided by the combination of surveys collected just 2 weeks apart
on 11 March 2019 and 26 March 2019. Before corrections to the
individual DEMs, the threshold of detectable change was 0.33 m
(Method II), in which case there was no detectable change in the
slide beyond the excavation of the toe (Fig. 11a). Once corrections
were made to each DEM, the threshold of detectable change was
lowered to 0.13 m (Method II), and small changes within the
landslide become apparent (Fig. 11b). A comparison with a
combination of DEMs after an additional 9 months had passed
shows that these small changes correlate with the pattern of
elevation change over that longer time period (Fig. 11d).

The bias between lidar DEMs or tilt between SfM DEMs was
easily identified using the noise maps. The pattern of tilt, in
particular, would have been easily obscured without the noise maps.
In this case, samples of noise in the road would show inconsistent
distributions of errors across the map area; or if a single noise
measurement was made of the area outside the slide, errors with a
large standard deviation, and thus a larger threshold of detection,
would be calculated.

When vertical changes in the landslide are large compared with
the noise, they are easy to distinguish even without reliance on a
formally calculated threshold. When the changes are small,
however, minimizing the threshold of detection is critical for
distinguishing real change.

Fig. 9. Topographic profiles through the landslide showing elevation change in the landslide between 2007 and 2021. The dashed profiles indicate the
topography at the beginning of each time increment and the coloured profiles indicate the topography at the end of each increment.
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Landslide deformation

The series of difference maps between 2007 and 2021 show that
the Taylor Mill debris slide developed on a slope that had been
altered by road construction, regrading and the addition of fill.
There is some evidence that a slow-moving landslide may have
already existed at this location, but the most significant landslide
movement occurred by 2012, probably owing to record
precipitation in 2011. Since 2012 the lower half of the landslide
has continued to slowly deform and move out into the roadway,
where it is periodically excavated, whereas the scarp region
displays only minor elevation changes. The most significant
change since 2012 is the major lateral expansion of the landslide
onto the natural slope, which had not been previously altered or
shown any signs of movement. This demonstrates that a landslide
that arguably was staged by human activities and triggered by
record rainfall can lead to the destabilization of adjacent
undisturbed slopes. This is important for the Cincinnati and
northern Kentucky region because there are numerous other
slow-moving landslides in the area that are similarly sensitive to
changes in precipitation (Sparling 2019). Regional precipitation
has increased 5–10% over the past 50 years owing to climate
change (EPA 2016), and an increase in landslide activity is
expected (Leshchinsky et al. 2017; Mirus et al. 2017; Coe et al.
2018). Furthermore, these landslides can potentially expand
laterally onto previously undisturbed slopes, as seen at in this
study, causing additional damage to property and infrastructure.

Imagery accessed via Google Earth prior to the first lidar
survey of 2007 indicates that a landslide may have already
existed on the slope, as imagery from 2003 and 2005 shows
some bare patches in the otherwise vegetated slope, and the
vegetation was cleared and slope regraded by June 2006 (Fig. 3).
The county-wide lidar DEM and imagery from 2007 shows this
regraded slope, and there is no evidence of the landslide at that
time. Between May 2007 and October 2008 fill was added to the
upper slope, and between October 2008 and July 2010 the upper
curve of the driveway was reconstructed, and fill was again
added to the upper slope (Fig. 3).

The major elevation changes within the landslide between
2007 and 2012 (Figs 8a and 9a) were probably triggered by the
record rainfall of 2011 (Fig. 10b). The magnitude of elevation
loss in the scarp area (up to 2.2 m) is much larger than the
magnitude of positive elevation gain in the lower half of the
slope (up to 1.3 m), as can be seen in the elevation profiles and
the magnitude of vertical change (Figs 9a and 10). The
topographic profiles, mapped elevation changes and magnitude
of vertical change between 2007 and 2012 all indicate that more
material was lost at the scarp than gained at the toe. Because the
landslide toe extended into the road, this material was excavated
and moved off-site.

Between 2012 and 2019 elevation changes continued to occur
throughout the landslide, but the changes had a smaller magnitude
(maximum of 1.2 m elevation change) than those that had
occurred between 2007 and 2012 (Figs 8b and 9b). Parallel

(a)
(b)

(c)
(d)

Fig. 10. Magnitude values for each DEM combination are calculated by summing the positive elevation gains with the absolute value of elevation losses for
each square metre in the sample area. (a) Landslide sample area. (b) Sum of the positive elevation gains and the absolute value of the negative vertical
losses in the landslide sample area, and annual precipitation from 2005 to 2021. (c) Sum of positive elevation gains in the landslide sample area. (d) Sum of
the absolute values of negative elevation loss in the landslide sample area.
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bands of elevation gain and loss that roughly parallel contours
indicate either internal deformation of the slide material as it
moves over an irregular slip surface or small internal slumps.
Between 2019 and 2021 elevation changes have been greatest in
the lower half of the slide, which has continued to advance into
the driveway, and where debris has been periodically excavated
(Figs 8c, d and 9c, d). Elevation changes in the upper half of the
slide appear to be confined to small slides or erosion. Between
2020 and 2021, the upper half of the slide appears quiescent
(Figs 8d and 9d).

By 2019 the landslide had also expanded laterally to the south.
Although the full extent of this expansion was obscured by
vegetation in the SfM surveys in 2019 and 2020, the lidar DEM in
2021 revealed that the landslide had laterally expanded by at least
60 m, thereby more than doubling its width (Fig. 8e). The landslide
is possibly expanding to the north as well. Some of this expansion
appears to involve the fill placed on the slope before the 2012 lidar
survey but has extended significantly beyond that. The 2021 lidar
DEM (Fig. 8e) also shows that several gullies had developed on the
slope, which were not observed in the 2012 lidar, indicating the
contribution of surfacewater to the landslide. Thus, the mobilization
of the landslide by 2012 was followed by continued deformation of
the toe, and a significant lateral expansion into a formerly
undisturbed natural slope.

Landslide signature

This pattern of elevation change seen in the Taylor Mill landslide is
characteristic of a debris slide, which ideally has an even loss of
elevation in the scarp area, internal deformation in the body of the
slide and elevation gain in the toe (Fig. 12). Interbedded shale and
limestone produce an uneven slip surface, which helps generate
internal deformation of the debris slide material (Fleming and
Johnson 1994). A slump, in contrast, would have the greatest
elevation drop at the scarp, which would progressively diminish to
the axis of rotation of the slide where the change should be zero, and
then a gradual increase in elevation towards the toe (Fig. 12). Thus,
we observe that the mapped elevation change signature reveals the
nature of the slide.

Because the landslide toe where it has run out over the road has
been excavated periodically, we do not observe as much elevation
gain in the toe as might be expected for a pristine debris slide.
Typical debris-slide thicknesses are up to 2 m for landslides in the
region (Fleming and Johnson 1994; Baum and Johnson 1996), and
the slightly higher elevation loss values observed in the scarp may
be due to the regrading of the slope in 2006, and the additional fill
material that was added to this slope between 2007 and 2010.

Although differencing two DEMs produces a map of vertical
change, this does not necessarily imply that the ground deformed

Fig. 11. Example of threshold maps before and after corrections for DEMs flown 2 weeks apart in March, 2019. The toe of the landslide was being
excavated during the second flight. (a) Threshold map prior to correction, using Method II, where the threshold of detectable change is 0.33 m. Only the
change owing to the excavation of the toe is apparent. (b) Threshold map after survey corrections, with a threshold of detectable change of 0.13 m. Small
elevation changes in the body of the landslide are apparent. (c) Landslide toe being excavated during second flight. (d) Threshold map of elevation change
over the course of the next year. Areas of small positive and negative changes correlate with the changes measured over 2 weeks.
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only vertically. Elevation change in a landslide could be produced
by vertical change but also by horizontal movement, or a
combination of the two. In a translational debris slide, for
example, there could be significant horizontal movement of the
slide down the slope, whereas the vertical changes may not appear
significant (Fig. 12). Continuing work on landslides in the
Cincinnati and northern Kentucky region will address the horizontal
component of movement, in addition to the vertical changes
reported here.

Thermal expansion and contraction

The amount of expansion and contraction for diurnal or seasonal
temperature changes will depend on the soil characteristics,
moisture conditions and the temperature conditions. A recent
study on a loess slope in China found that the soil expanded and
contracted with an amplitude of about 1 mm over the course of a
year owing to temperature variations (Lan et al. 2021). In a
laboratory study of bentonite clay under thermal loading, the heating
and cooling resulted in expansion and contraction with a volumetric
strain of c. 1.0% (Tang et al. 2008). If we consider a hypothetical
2 m thick volume of bentonite that is allowed to expand only
vertically as a result of thermal loading, an elevation change of c.
0.02 m would result. The clayey soils in the northern Kentucky area
probably fall somewhere between these two examples, thus
expansion and contraction values, although non-zero, would lie
below the threshold values calculated for this study, the smallest of
which is 0.05 m.

Influence of vegetation

The influence of vegetation on SfM DEMs is well documented
(Cook 2017; Zekkos et al. 2018) and is significant when comparing
elevation maps over longer time spans when changes to vegetation
can be expected. However, we found that in SfM DEMs conducted
close in time and prior to the growing season, very little change to
vegetation has occurred. Therefore, any vertical change to the
landslide will change the vegetation as well, and vertical changes in
the vegetation reflect real vertical change in the landslide. The
combination of DEMs over a 2 week period was able to detect small
elevation changes in the body of the slide, and the locations and
magnitudes of these changes were confirmed in the survey of the
following year (Fig. 11).

It is sometimes assumed that vegetation is completely removed in
bare earth DEMs derived from lidar, when in fact vegetation may
still influence the DEM. For example, elevation changes between
two lidar DEMs are seen in the mowed area across the road from the
landslide, which reflects the differing grass heights during these two
surveys (Fig. 6b).

Spatial variability of uncertainty

There is spatial variability in uncertainty related to terrain character-
istics such as roughness (Podobnikar 2016), slope (Xiong et al. 2018),
point density and vegetation (Clapuyt et al. 2016) and combinations of
terrain characteristics (Carlisle 2005). In this study we used errors in
the apparently stable and smooth roadways outside the landslide. If no
road or other smooth surface was available, we expect that thresholds
of detectable change would be higher. For example, for the
combination of the 2012 county-wide lidar DEM and the SfM DEM
of March 11, 2019, the road areas had a distribution of noise of 0.034
± 0.033 m, and threshold values of 0.06 m (Method I) and 0.09 m
(Method II). In contrast, the distribution of noise in the grassy area
below the landslide was −0.074 ± 0.072 m, which produced threshold
values of ±0.14 m (Method I) and ±0.20 m (Method II).

Conclusions

Slow-moving landslides are chronically destructive and can
permanently damage property and infrastructure. The purpose of
this study was to better understand decadal-scale spatial and
temporal variations in a slow-moving debris slide in northern
Kentucky over 14 years. To accomplish this, we needed to integrate
existing county-wide lidar data acquired before our study began,
along with site-specific SfM and UAV-lidar surveys. Because the
technology and quality differ between surveys, the challenge was to
devise a method to quantify survey noise so that a threshold of
detectable change could be calculated. To reduce the threshold of
detectable change, bias between lidar DEMs and tilt between SfM
DEMs was first corrected to produce a zero mean elevation
difference in areas outside the landslide where no change is inferred
to have occurred. The threshold of detectable change was then
calculated from the remaining random noise using two methods,
each of which used the propagated elevation difference errors for the
DEM combination. Method I used the errors from the difference
map and Method II used back-calculated estimates of the individual
DEM errors. The thresholds of detectable change range from ±0.05
to ±0.20 m, depending on the DEM combination and method used,
with Method II producing a larger threshold value.

The series of difference maps between 2007 and 2021 show that
the landslide developed on a slope that had been altered by road
construction, regrading and the addition of fill. The greatest change
in the landslide occurred between 2007 and 2012 and was probably
triggered by the record rainfall of 2011. Since 2012 the lower half of
the slide has continued to slowly deform whereas the upper half of
the slide has been generally quiescent. The most significant change
since 2012 is that the landslide has expanded laterally by at least
60 m into an unaltered slope that had previously shown no signs of
movement, demonstrating that a landslide that was staged by human
activity can lead to the destabilization of adjacent slopes.

Fig. 12. Pattern of elevation loss and gain
expected for translational debris slides and
rotational slumps. Interbedded shale and
limestone produce an uneven slip surface,
which helps generate internal deformation
of the debris slide material (Fleming and
Johnson 1994).
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The region has numerous other slow-moving landslides, and with
precipitation increasing because of climate change, landslide
activity is projected to increase. Thus, monitoring these slow-
moving landslides is a critical part of landslide mitigation.We found
that real change occurred in the landslide in all DEM combinations,
including in SfM DEMs separated in time by just 2 weeks. Thus, in
addition to providing a way to utilize older or noisy low-resolution
datasets to document the behaviour of a landslide over many years to
decades, the methods of calculating a threshold of detectable change
presented here can also provide a reliable method of monitoring
continuing changes in a slow-moving landslide. This technique for
calculating a threshold of detectable change is widely applicable to
other change detection studies where various survey technologies
have been used to capture elevation data, including older regional or
low-resolution surveys that might predate a particular investigation.
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