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Abstract

Surficial geologic maps contribute to decisions regarding natural hazard mitigation,

land-use planning and infrastructure development. However, geologic maps may not

adequately convey the uncertainty inherent in the information shown. In this study,

we use machine learning and lidar elevation data to produce surficial geologic maps

for parts of two quadrangles in Kentucky. We measured the performance of eight

supervised machine learning methods by comparing the overall accuracy and F1

scores for each geologic unit. Surficial geologic units include residuum, colluvium,

alluvial and lacustrine terraces, high-level alluvial deposits and modern alluvium. The

importance of 41 moving-window geomorphic variables, including slope, roughness,

residual topography, curvature, topographic wetness index, vertical distance to chan-

nel network and topographic flatness, was reduced to 12 variables by ranking the

importance of each variable. The gradient-boosted trees model produced the classi-

fier with the greatest overall accuracy, producing maps with overall accuracies of

87.4% to 90.7% in areas of simple geology and 80.7% to 81.6% in areas with more

complex geology. The model produced high F1 scores of up to 96.2% for colluvium

but was not as good at distinguishing between units found in the same geomorphic

position, such as high-level alluvium and residuum, both of which are found on ridge-

lines. Probability values for each geologic unit at each cell are conveyed using grada-

tions of colour and eliminate the need for drawn boundaries between units. Machine

learning may be used to create accurate surficial geologic maps in areas of simple

geology; in more complex areas, highlight that additional information obtained in the

field is necessary to distinguish between units.
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1 | INTRODUCTION

The making of geologic maps is a fundamental contribution of geolo-

gists to society and industry. However, formatting limitations require

geologists and cartographers to make decisions about what informa-

tion to display and omit, as well as how to show boundaries and areas

of geologic uncertainty or transition. Traditionally, there have been

few options to communicate the nuance and uncertainty in the

mapping process. Perhaps not fully understood by many map users is

that geologic maps may convey a level of certainty, which obscures

the myriad of decisions and interpretations made by the mapper.

The combination of machine learning with surface, geophysical and

remote sensing data provides a new tool for producing geologic maps,

which can also convey the underlying uncertainty intrinsic to any

geologic map.

The utility of geologic maps in locating natural resources and for

engineering projects has been recognized since the first widely publi-

shed geologic map of England by Smith (1815) and Winchester

(2009). In addition to the exploration of mineral, energy and water

resources, geologic maps support decision-making processes for

natural hazards such as landslides, rockfall, floods, earthquakes and

karst; for land-use planning, climate change and environmental impact
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evaluations, identifying health hazards, and in locating and building

infrastructure such as roads, buildings, dams and utilities (Bernknopf

et al., 1993; Derouin, 2021; GSA, 2022). The economic value of

geologic maps includes not only the resource development but also

the prevention of economic loss due to poor land-use decisions and

documented benefit-to-cost ratio for geologic mapping ranges from

4:1 to >100:1 (Berg, MacCormack, & Russell, 2019).

A map of geologic units and boundaries may convey a certainty

to the user that the map gives exact and perfect information about

the geology at every map location. In reality, mapped geological

boundaries are inherently uncertain for several reasons: The boundary

may be gradational as opposed to a sharp contact, the width and

position of boundaries are generalized and dependent on the scale of

the map, and boundaries may be obscured in the field (Lark

et al., 2015). As we are unable to directly observe geologic variables

at every point, we use models—either mental or computational—to fill

in the gaps (Kirkwood, 2022). Individual mappers might use different

models and thus produce different maps of the same location. In

addition, decisions mappers used to define boundaries might be

poorly documented, and the depth of information that went into the

creation of a map may not be conveyed in the final product (Jones

et al., 2004; Kirkwood, 2022). As there are many potential models to

interpolate between direct observations, the necessity of quantifying

and conveying uncertainty is an essential part of geologic mapping

(Tikoff et al., 2023) and soil mapping (Boettinger et al., 2010;

Khaledian & Miller, 2020).

Technological advances throughout history have facilitated

changes in geologic mapping such as GPS, GIS, aerial photography,

satellite imagery, lidar, geophysical and geochemical data sets. Over the

past decade, the expanded deployment of traditional sensors and the

development of new data sources such as lidar and satellite data have

increased the amount of data available to geoscientists (Bergen

et al., 2019). The availability of these large data sets, in combination

with advances in computational capacity, has made machine learning

(ML) increasingly applicable to modelling a variety of Earth processes.

Advantages of ML specific to geologic mapping are the ability to pro-

cess data sets with numerous variables (high-dimensionality data sets)

in order to replicate human mapping performance, to produce maps

more quickly than humans can, to produce maps using a consistent

well-documented model across large regions, to quantify the probability

of each geologic unit for every cell of the map and to convey those

probabilities as part of the final map (Bergen et al., 2019; Cracknell &

Reading, 2013). Probability is the likelihood of a particular classification;

a probability of 0.5 that a cell belongs to a particular geologic unit would

indicate considerable uncertainty about that classification, while a prob-

ability of 0.9 or above would indicate a high level of certainty about the

classification, and a very low probability would indicate a high level of

certainty that it does not belong to that particular classification.

There are two main types of ML: supervised classification, which

requires labelled examples to learn to distinguish patterns and then

make predictions or classify previously unseen data, and unsupervised

classification techniques, which learn to distinguish patterns in data

without any labels provided. A ML map can document the probability

for each class at any point on the map and provide a consistent and

well-documented mapping process. Thus the map user can obtain

information about the range of geological properties they might

encounter at any particular location (Kirkwood, 2022).

While there are examples of geologic maps of bed-rock produced

using ML methods, there is also great potential for ML in mapping surfi-

cial geology. Maps of bed-rock geology in New South Wales, Australia,

were produced from dispersed geologic data in conjunction with geo-

physical and remote sensing data (Cracknell & Reading, 2014) and in

the Eastern Goldfields of Australia using only geophysical data (Kuhn,

Cracknell, & Reading, 2018). Geochemical maps in England were gener-

ated using sparse geochemical data in combination with geophysical

and remote sensing data (Kirkwood et al., 2016, 2022). However, fewer

maps have been created of surficial geology using ML, such as regolith

mapping in West Africa using airborne geophysics and remote sensing

data (Metelka et al., 2018), though there are examples of surficial

geologic hazards identified utilizing ML such as landslide-susceptibility

maps produced using landslide inventories and lidar data in Kentucky

(Crawford et al., 2021) and Japan (Dou et al., 2019), and the identifi-

cation of sinkholes in Kentucky (Zhu & Pierskalla, 2016). Given the

dramatic increase in the number of geophysical and other data sets

publicly available, there is great potential for the expansion of ML to

geologic mapping applications throughout the world, which may be

particularly useful where ground information is sparse or non-existent.

In this study, we examine the utility of ML to the process of map-

ping the surficial geology of Kentucky using the characteristics of the

terrain derived solely from lidar-based digital elevation models (DEMs).

Our goal was to evaluate whether the process of mapping surficial geo-

logic units could be automated using currently available off-the-shelf

machine learning software to produce maps where classification

uncertainty is conveyed, and which are useful within the context of a

production-oriented geological survey mapping programme. The

Commonwealth of Kentucky, USA, is the first state with bed-rock fully

mapped at a scale of 1:24 000. The cost of mapping bed-rock for all

707 quadrangles was initially justified by the economic development of

coal, oil, natural gas and minerals; today, the use of maps for manage-

ment of land, water and the environment has supplanted their use for

natural resource development (Bhagwat & Ipe, 2000). To address these

needs, geologic mapping of surficial deposits began in 2004 and

continues today (KGS, 2021). Mapping the surficial geology of each

quadrangle using traditional means requires multiple steps: contacts

between surficial units are mapped based on topographic features

derived from lidar data, initial maps are used in the field to resolve

ambiguous features, contacts and units, and choose sample locations to

further inform and update the maps, and final maps are produced. The

process takes approximately 1 year for a standard 7.5-min topographic

quadrangle published at a scale of 1:24 000 (Hammond et al., 2017). To

test the utility of ML to create surficial geologic maps, we first test

eight different ML models and 41 terrain variables to determine the

best performing model, and the key variables needed to produce maps

efficiently. Using the best performing model and most important vari-

ables, three areas in each of two quadrangles are then mapped, and the

results are quantitatively and qualitatively evaluated.

2 | GEOLOGIC SETTING

The two quadrangles used for this study are both situated within the

Outer Bluegrass physiographic region of Kentucky, which is character-

ized by a dissected terrain that has formed in gently dipping Palaeozoic

carbonates and shales (McDowell, 1986). A dendritic drainage system
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contributes to the larger river valleys, which are entrenched 60–90 m

below the ridges and hold a sequence of lacustrine and alluvial terraces

above the modern floodplain. The De Mossville Quadrangle (Massey,

2017) is in Pendleton County, KY, about 34 km south of Cincinnati,

OH, and the Ohio River (Figure 1). The Pitts Point quadrangle (Massey

et al., 2019) is in Bullitt County, approximately 160 km to the southeast

of the De Mossville quadrangle and 48 km south of Louisville, KY. The

Licking River meanders north towards the Ohio River though the De

Mossville quadrangle, and the Salt River flows to the Ohio River 15 km

to the north through the Pitts Point quadrangle.

Bed-rock has weathered to produce ridgetops of residuum and

moderate to steep slopes of colluvium. In both quadrangles, the

residuum of the ridgetops is interrupted by high-level alluvial and

lacustrine deposits or terraces that date to the Pliocene or early

Pleistocene (KGS, 2023; Massey, 2017; Massey et al., 2019). These

deposits record the presence of an ancestral river system, which

predates the down cutting of the Ohio River to its current level

(McDowell, 1986; Potter, 2007). As the Laurentide ice sheet advanced

and blocked this ancestral river system, the Ohio River valley was

formed (Durrell, 1982; Granger & Smith, 1998). The former plateau

was dissected in a dendritic pattern as the landscape eroded to meet

this new base level. Subsequent glacial advances and their deposits

blocked drainages, forming lakes, their presence recorded by exten-

sive lacustrine terraces (middle to late Pleistocene) found along the

river valleys including both quadrangles in this study. These lacustrine

terraces have been dissected by late-Pleistocene alluvial terraces into

which the modern floodplain is entrenched.

Surficial geologic units in both quadrangles form both natural

resources and hazards. Outwash and alluvial terraces form resources

of sand and gravel for building materials and freshwater aquifers

(McDowell, 1986; Potter, 2007). The steep colluvium covered slopes

developed from shale-rich bed-rock are prone to landsliding (Baum &

Johnson, 1996; Crawford, 2012; Johnson et al., 2023).

3 | METHODS

3.1 | Overview

The utility of ML for mapping surficial geology in Kentucky was

assessed by training and testing eight ML methods using publicly

available digital elevation models (DEMs) and surficial geologic maps

F I GU R E 1 Location and surficial geology of the 7.5-min Pitts Point and De Mossville quadrangles in Kentucky, USA.
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for two quadrangles in Kentucky. A summary workflow is shown

in Figure 2, and each step is described in detail in the following

paragraphs.

3.2 | Surficial geologic quadrangles

Machine learning methods were applied to two surficial geologic maps

published as 7.5-min quadrangles by the Kentucky Geological Survey

(KGS). These were created using traditional field-based and digital

mapping methods. One quadrangle from each region, Pitts Point

(SE corner 85� 450 , 37� 520 3000) (Massey et al., 2019) and De

Mossville (SE corner 84� 220 3000, 38� 450) (Massey, 2017) were each

chosen to include a diverse set of surficial geologic units including

residuum and colluvium derived from bed-rock units, high-level pre-

glacial alluvial deposits, a sequence of alluvial and lacustrine terraces,

modern alluvial deposits and fill.

3.3 | Digital elevation maps and derivative maps

The DEMs for the Pitts Point and De Mossville Quadrangles are

publicly available through KyFromAbove, the state’s elevation data

and aerial photography programme, which is accessible digitally at

F I GU R E 2 Overview of workflow.
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kyfromabove.ky.gov. The maps were derived from lidar data and have

a 5 ft (1.524 m) cell size. To test which geomorphic variables are the

most important for the ML models, a series of 41 derivative maps

were made from the DEMs using ESRI ArcPro GIS software (Table 2).

The derivative maps represent geomorphic attributes independent of

their specific location (i.e., latitude and longitude). Moving windows

with radii ranging from three cells to 500 cells were used to measure

qualities of the geomorphology at a variety of scales such that each

cell has information about its local vicinity as well as a comparison to

or measure of the surrounding terrain (Table 1). A multiscale digital

terrain analysis approach is important, as the spatial patterns of land-

forms may be more visible at one scale than another or more related

to some terrain attributes than others (e.g., Behrens et al., 2010). The

topographic features that we are capturing include small-scale fea-

tures such as gullies and small depressions in the residuum and alluvial

terrace 4, moderate-scale features such as ridges of residuum, ridges

of high-level alluvium, alluvial terraces and small tributary valleys; and

large-scale features such as the trunk valleys, and lacustrine terraces

(Table 1). All variables were standardized in ArcPro so that the mean

value was 0, and the standard deviation was 1 in order to make the

units of each variable comparable (Shanker, Hu, & Hung, 1996).

A series of residual topographic maps and slope maps were made

using the original unsmoothed DEM and smoothed DEMs. Smoothed

DEMs were produced using a focal statistics tool in GIS, which calcu-

lates a statistic for a defined region around a particular cell, in this

case the mean elevation was calculated within a circular radius around

each cell ranging from 16 cells to 1500 cells (49 to 2740 m). Residual

topographic maps were produced by subtracting each smoothed

DEM from the elevation for each cell, thus allowing the position of a

cell relative to its surroundings to be represented, with positive values

representing ridges or peaks, negative values representing depres-

sions or valleys and values close to zero representing an even slope or

flat area (Weiss, 2001; De Reu et al., 2013; Haneberg et al., 2005;

Muñoz & Valeriano, 2014). Slope maps were produced from the

original DEM and smoothed DEMs with moving windows of 4, 8,

16, 24 and 32 cells (Table 2).

Profile and planar curvature are the second derivative of the sur-

face or the slope of the slope. Profile curvature is calculated parallel

to the slope, and positive values indicate the surface is upwardly

concave at that cell, negative values indicate the slope is upwardly

convex at that cell, and a value of zero indicates that the slope is

linear. Planar curvature is perpendicular to the orientation of the

maximum slope. A positive value indicates that the surface is laterally

convex, a negative value indicates that the surface is laterally concave,

and a zero value that the surface is linear at that cell. Profile and

planar curvature were calculated in ArcPro using a 3 by 3 window of

cells, using the original DEM and smoothed DEMs with a radius of

50, 100 and 500 cells (Table 2).

T AB L E 1 Scale of topographic features in the Pitts Point (PP) and
De Mossville (DM) quadrangles.

Topographic features Feature width

Trunk valleys 1500 to 2700 m

Tributary valleys with alluvium 300 to 1000 m

Tributary valleys without alluvium 130 to 260 m

Lacustrine terraces 2300 to 2700 m PP; 800

to 1500 m DM

Alluvial terraces 150 to 600 m PP; 20 to

400 m DM

Width of floodplains 100 to 275 m PP; 50 to

175 m DM

Tributaries within terraces 30 to 150 m

Colluvial slopes on valley walls 150 to 300 m PP; up to

900 m DM

Colluvial slopes of tributaries within

terraces

3 to 30 m

Ridges of residuum 15 to 300 m

Ridges of alluvial terrace 4 10 to 250 m PP

Ridges of high-level alluvium 30 to 250 m DM

Gullies and small depressions in

residuum and alluvial terrace 4

1.5 to 8 m

Width of roads and other fill 12 to 100 m

T AB L E 2 Definition of variables.

Variable Description

Digital elevation model (DEM) Mean height of cell measured from

mean sea level, cell dimensions

1.524 m

Smoothed DEM Mean elevation within a radius

ranging from 4 to 1500 cells. Used

to calculate residual topography,

slope and curvature maps

Slope Slope original DEM, using a 3 by 3

cell moving window

Slope of smoothed DEM radius

4, 8, 16, 24, 32

Slope of the smoothed DEM

Residual Topography (RT),

radius 16, 24, 32, 50, 100, 150,

200, 500, 1000, 1500

The elevation of the original DEM

minus the smoothed DEM

Vertical distance to channel

network

Vertical distance to a channel

network, which accumulates from

an area of least 450,000 m2

Topographic Wetness Index

(TWI)

Areas that are likely to be wetter

due to their position in the

landscape. ln (upslope area/tan

[local slope])

Profile curvature of DEM,

smoothed DEM radius 5, 50,

100, 500

Profile curvature of the original and

smoothed DEMs. The second

derivative of the profile slope, or

the slope of the slope

Plan curvature of DEM,

smoothed DEM radius 5, 50,

100, 500

Plan curvature of the original and

smoothed DEM. The second

derivative of the plan view, or the

slope of the plan view slope

Roughness radius 4, 8, 16, 24,

32, 50, 100

Standard deviation of the slope

angles derived from the original

DEM within a radius of 16, 24, 32,

50 and 100 cells

Flatness, radius 50, 100, 150,

200, 250, 500

Standard deviation of the elevation

values from the original DEM,

within a radius of 50, 100, 150,

200, 250 and 500 cells

Geomorphons, search distance

15.2, 30.5, 45.7 m

Landforms classified into common

landform types: flat, peak, ridge,

shoulder, spur, slope, hollow,

footslope, valley and pit
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Surface roughness maps are a measure of the distribution of slope

angles within a particular area. They were produced using the focal

statistics tool to calculate the standard deviation of the slope angles

derived from the original DEM within a circular radius ranging from

16 to 150 cells (Grohmann, Smith, & Riccomini, 2011). A measure of

topographic flatness was calculated from the standard deviation

of elevations from the unsmoothed original DEM using the focal sta-

tistics tool and a radius ranging from 100 to 500 cells (Grohmann,

Smith, & Riccomini, 2011).

The topographic wetness index (TWI) is a measure of areas likely

to be wetter due to their topographic positions and was calculated by

taking the natural log of the upslope area, divided by the tangent of

the local slope in radians (Beven & Kirkby, 1979). The vertical distance

to the channel network was calculated for a network, which accumu-

lates from a heuristically chosen value of at least 450 000 m2.

In addition to the topographic variables described above, we used

geomorphons, which use the DEM and search distances from each

cell in order to classify landforms into 10 common landform types:

flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley and pit

(Jasiewicz & Stepinski, 2013). For this study, geomorphons were

calculated in ArcPro using search distances of 15.2, 30.5 and 45.7 m.

3.4 | Geologic classes

The geologic units were simplified to avoid undersampling smaller

scale features such as alluvial fans, colluvium accumulation zones,

landslides and different varieties of fill (Table 3). Colluvium is defined

to include landslides and colluvium accumulation zones found at

the base of some slopes. Alluvium is defined to include alluvial fans,

alluvium in tributaries and old alluvium. The lacustrine and alluvial

terraces were divided into three terrace units: alluvial terraces 3&4

are at the highest level; lacustrine terraces 1&2 lie below this; and

alluvial terraces 1&2 are at a lower level nearest the modern flood-

plain. Fill includes engineered and nonengineered artificial fill.

3.5 | Machine learning methods

Supervised ML methods use training data that has a known classifica-

tion, in this case the mapped surficial geologic unit, to train a classifier

which is then used to classify previously unobserved data. To build

the classifier and measure how well it performs, the data set is ran-

domly divided into a training set, which is used to train the model, and

a testing set, which is used to measure the performance of the model.

We used a data set of 10 000 random points within a training area for

each quadrangle (Figure 1). As the geologic classes are imbalanced

(i.e., there are far more examples of colluvium than the other units in

the data set), we used stratified sampling with proportional allocation.

We then used fivefold cross-validation to test each model, which was

repeated for a total of ten folds.

We measured the performance of eight supervised ML methods

in Mathematica. The eight ML methods tested represent the main

types of supervised learning algorithms and are available in the soft-

ware used for the analysis (‘Mathematica’, 2022; Bergen et al., 2019):

logistic regression, support vector machine, nearest neighbour, deci-

sion tree, random forest, gradient-boosted trees, naïve Bayes, and

neural network. These methods are summarized in Table 4 and further

described below. We used the automated function ‘Classify’ in

Mathematica, which trains a number of hyperparameters automa-

tically on a subset of the training set and then chooses the best

configuration for the full training set (Bernard, 2021). The method

that produced the greatest overall accuracy and F1 scores out of the

eight tested models was then refined by further tuning model

hyperparameters. The values used for all models are included in the

supplementary materials.

T AB L E 3 Simplified lithological categories.

Surficial geologic units for the Pitts Point and De Mossville
Quadrangles

Residuum

Colluvium (includes landslides and colluvial accumulation at the base

of slopes)

High-level alluvium (high-elevation preglacial river system deposits)

Alluvial terrace 3&4

Lacustrine terraces 1&2

Alluvial terraces 1&2

Floodplain (main river valley)

Alluvium (includes alluvial fans, alluvium in tributaries, old alluvium)

Artificial fill (engineered and other fill)

T AB L E 4 Summary of the ML models used in this study.

Machine
learning
method

Algorithm
type Description

Logistic

regression

Binary

classifier

Uses a logistic function to estimate the

probability that a data point belongs to

one of two classes

Support

vector

machine

Binary

classifier

Finds a hyperplane that separates

training data into two classes. A

multiclass classification is reduced to a

set of binary classification problems

Nearest

neighbour

Instance-

based

Infers the class of each example by

comparing to the nearest neighbour in

the feature space and picking the

commonest class or average value

Decision

tree

Decision

Tree

A branching treelike structure where

each node represents a test on each

feature, each branch represents the

outcome of a test, each leaf represents

a prediction or class probability

Random

forest

Ensemble An ensemble of weaker decision trees

independently trained on a subset of

the training data. Predictions are

combined

Gradient-

boosted

trees

Ensemble An ensemble of weaker decision trees is

trained sequentially, compensating for

the weaknesses of previous trees

Naïve Bayes Bayesian Applies Bayes’s theorem, which

assumes that features are independent

given the class, regardless of possible

correlations between features

Neural

network

Neural

Network

Consists of stacked layers each of

which performs a single computation

and passes that value to the next layer
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Logistic regression (LR) uses a logistic function to estimate the

probability that a data point belongs to one of two classes

(Cox, 1958). This method has been used to map soil type based on

terrain parameters (e.g., Giasson et al., 2008) and landslide susceptibi-

lity mapping (Crawford et al., 2021). The optimization method used in

this study is the limited memory Broyden-Fletcher-Goldfar-Shanno

(LBFGS) algorithm (Liu & Nocedal, 1989). Overfitting of data is

prevented by utilizing L1 and L2 regularization values, which add a

penalty as the model complexity increases (Ng, 2004). Our models

used L1 regularization values of 0 and L2 regularization values ranging

from 0.000001 to 1.

The support vector machine (SVM) method is designed to con-

struct an optimal decision surface, or hyperplane, in the feature space

that separates classes (Cortes & Vapnik, 1995; Heung et al., 2016). To

create nonlinear class boundaries for the classification of complex

data sets, the training data set is transformed to a high-dimension fea-

ture space using a polynomial or radial basis kernel, which may be

divided by a linear decision surface; in the original non-transformed

space, this surface becomes a nonlinear hyperplane (Cortes &

Vapnik, 1995; Heung et al., 2016). The hyperplane is constructed to

have a maximum margin, or distance, from individual observations,

making the results more applicable to the unseen data (Khaledian &

Miller, 2020). While the models are fast to run, training time can be

slow as the similarity of every pair of training examples is computed

(Bernard, 2021). SVM has been used for digital soil mapping

(Kovačevi�c, Bajat, & Gaji�c, 2010) and creating landslide susceptibility

maps (Huang & Zhao, 2018; Kavzoglu, Sahin, & Colkesen, 2014). Our

model uses an exponential radial basis function as the kernel. The

gamma scaling parameter that controls the influence of the support

vectors is automatically chosen in Mathematica, with values ranging

from 0.0121833 to 0.0319713. The multiclass strategy we used is

one versus one, which tests each class against each other.

The nearest neighbour, also known as the k-nearest neighbour

(KNN) method, assumes that examples that have similar features

likely have similar labels (Bernard, 2021). This method picks the most

common class among the KNN, where k is the number of neighbours

considered. While training is fast, this method does not have the

capability to learn that some variables are more important than

others; thus, the resulting model may not produce the best predic-

tions (Bernard, 2021). While this model is one of the simplest

machine learning methods, it can be useful and has been used for

digital mapping of soils (Khaledian & Miller, 2020; Mansuy

et al., 2014). Our models used k-values of 10 and 20, a regularization

parameter of 0.5, and scanned the entire data set to compute the

k-nearest examples.

The decision tree (DT) model has a treelike structure, where each

node represents a test on a feature, and each branch represents the

test outcome. The nodes and branches continue until a leaf is reached,

with the leaf representing the class prediction. The DT model may not

provide great models in terms of predictions, but it is fast

(Bernard, 2021). Perhaps more importantly, DT is the basis for two

more complex but better performing ML methods, random forest and

gradient-boosted trees. The DT is constructed using the classification

and regression tree (CART) algorithm in Mathematica. DT has been

used for soil mapping (Hateffard et al., 2019), landslide susceptibility

mapping (Yeon, Han, & Ryu, 2010) and subsidence maps (Lee &

Park, 2013).

The random forest (RF) method is an ensemble learning algorithm

that works by constructing a collection of DT classifiers, and each tree

votes for the most popular class (Breiman, 2001; Khaledian &

Miller, 2020). Each DT is trained independently on a random subset of

the original training data set (bootstrap samples). The RF method is

generally fast and makes good predictions, making it a great out of

the box method (Bernard, 2021). It has been used for soil mapping

(Dharumarajan & Hegde, 2022; Gruber et al., 2019; Heung

et al., 2016), geologic mapping (Cracknell & Reading, 2013), landslide

susceptibility maps (Sun et al., 2020) and sinkhole mapping (Zhu &

Pierskalla, 2016). For our models, we used the default values in

Mathematica, so each tree was constructed using 15% of the training

set, 100 trees were trained to produce the forest, and the maximum

number of samples in each leaf was 2.

The gradient boosted trees (GBT) method is an ensemble learning

algorithm where models are trained in a sequence, and each new

model corrects the errors from the previous model. In this way, weak

DT learners are combined into a stronger ‘boosted’ learner. GBT gen-

erally produces predictions that are as good or even better than RF

(Bernard, 2021). The GBT model is slower to train than RF, and there

are more hyperparameters to tune including the learning rate, the size

or depth of the trees and the number of trees. A slower learning rate

produces a model that generalizes better than a faster rate. Deeper

trees with multiple nodes can capture more complex relationships

between features. The number of trees is also important, as too many

trees can lead to overfitting. GBT has been used for digital soil map-

ping and landslide susceptibility mapping using terrain features as

inputs (Dyer et al., 2024; Hitziger & Ließ, 2014; Sahin, 2020).

Mathematica trains a number of hyperparameters automatically on a

subset of the training set and then chooses the best configuration for

the full training set (Bernard, 2021). For our models, the number of

training rounds was the default value of 50, the number of leaves

ranged from 13 to 1023, the learning rate ranged from 0.1 to 0.2, the

maximum tree depth was the default value of 6, and the leaf size

ranged from 7 to 90.

The naïve Bayes (NB) method is based on Bayes’ theorem, which

assumes that all variables in a data set are independent from each

other. While it is a simpler model than the ensemble methods

described above, it has been used for mapping and landslide suscepti-

bility studies, though in comparison with other ML methods, it some-

times fall short (Harvey & Fotopoulos, 2016; Pham et al., 2017).

Neural network methods, also known as artificial neural net-

works (ANN), mimic biological neural networks. The structure con-

sists of interconnected nodes, or artificial neurons, that are

organized into layers, and information is passed from one layer of

the network to another (Khaledian & Miller, 2020). While there are

several types of ANN architectures, the one used for this study is a

multilayer perceptron with self-normalizing architecture. It uses

dropout for regularization and a scaled exponential linear unit acti-

vation function (Bernard, 2021). Variables are introduced to the

input neurons, which are then connected to multiple layers of hid-

den neurons where computations are made using the activation

function and are then linked to output layer where the predictions

are made (Heung et al., 2016; Jaiswal, 2024). During the training

period, the output is compared to the input and the residual

calculated, and the network is repeatedly adjusted and the residual

calculated again until it is minimized (Khaledian & Miller, 2020).
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Neural networks of various architectures have been used for digital

soil mapping, geologic mapping and landslide susceptibility studies

(Kawabata & Bandibas, 2009; Kalambukattu, Kumar, & Arya

Raj, 2018; Bodaghabadi et al., 2015). For this study, Mathematica

trains a subset of the training set and then chooses the best config-

uration for the full training set. Values for the network depth ranged

from 2 to 8, and the maximum number of training rounds ranged

from 10 to 300.

3.6 | Variables and dimensionality reduction

A total of 41 variables were initially used to train the eight machine

learning models. The dimensionality of the data set was then reduced

to the 12 most important variables to lessen the computing power

necessary to perform further classifications of larger map areas. We

evaluated the variable importance by using the Cumulative Feature

Impact Plot in Mathematica, which ranks the importance of each vari-

able in the model. We ranked the importance of each variable for each

model produced from the tenfold and chose the 12 top-ranked vari-

ables. A distribution of classifier accuracy with all 41 variables versus

a model trained with just the 12 selected variables was performed to

measure the loss of accuracy.

3.7 | Quantifying model performance

The performance of eight machine learning methods was evaluated

by comparing their overall accuracy and the F1 scores for each geo-

logic unit. Accuracy is defined as the fraction of correctly classified

examples:

Accuracy¼ TPþTN
TPþTNþFPþFN

where TP = the number of true positive predictions, TN = the

number of true negative predictions, FP = the number of false posi-

tive predictions (Type I errors), and FN = the number of false nega-

tive predictions (Type II errors). Accuracy is a useful metric for

comparing the models which all use the same data. However, as the

distribution of classes is not even (e.g., there are many more sam-

ples of colluvium than high-level alluvium or fill), accuracy is not a

good way to measure model performance for each geologic unit

(Forman & Scholz, 2010). For example, a good performance of the

model to predict colluvium might overshadow its poor performance

in predicting fill. The F1 score, on the other hand, accounts for class

imbalance through the metrics of Precision and Recall for each

class:

Precision¼ TP
TPþFP

Recall¼ TP
TPþFN

F1¼2� Precision�Recall
PrecisionþRecall

3.8 | Lithologic probability maps

Qualitative evaluations of the best and worst models were produced

by creating maps for three 1.5 � 1.5 km areas for each quadrangle.

Map 1 for both the Pitts Point and De Mossville quadrangles is just

outside of the training area. Map 2 is within the training area, and

Map 3 is 4.5 to 6 km away from the training area boundary for the

Pitts Point and De Mossville quadrangles, respectively (Figure 1).

The probability of every cell belonging to each geological unit was cal-

culated using the ML model. These probabilities were then brought

into GIS software, and probability map layers were produced for each

unit. These maps were symbolized so that the darkest shade repre-

sents a probability of ≥80%, the middle tone represents probabilities

of 60% to 80%, the lightest tone represents probabilities of 40% to

60%, and probabilities of <40% are completely transparent. In this

way, each map layer preserves the underlying probability values, and

different map users could change the symbology according to their

purpose. The probabilities can also be shown by querying specific

points if the maps are being used in GIS software. The resulting ML

maps can then be compared with the hand-digitized maps.

4 | RESULTS

4.1 | Model accuracy and F1 scores

Of the eight models tested, the GBT model produced the classifier

with the greatest overall accuracy for both the Pitts Point and De

Mossville quadrangles, with an overall accuracy of 0.926 ± 0.006 and

0.901 ± 0.006, respectively (Figure 3, Figure 4, Tables 5 and 6),

and the NB model produced the least accurate classifier in both cases,

of 0.811 ± 0.007 and 0.787 ± 0.011, respectively. The GBT model

also produced the highest F1 scores for all geologic units for both

quadrangles. In the Pitts Point quadrangle, the colluvium, residuum,

alluvial terraces 1&2, lacustrine terraces 1&2 and floodplain have F1

scores of 90% or greater, while the fill, alluvium and alluvial terraces

3&4 have lower F1 scores (Table 5). In the De Mossville quadrangle,

the colluvium and floodplain have F1 scores of 90% or greater, while

the fill, alluvium, high-level alluvium, terraces and residuum have

lower F1 scores (Table 6). Confusion matrices for one of the models

for the Pitts Point quadrangles give a more detailed view of how the

model performed (Figure 4).

4.2 | Hyperparameter tuning of GBT model

The GBT model was further refined by tuning the learning rate and

the leaf size; the maximum training rounds and maximum depth were

left at the automatically chosen values of 50 and 6, respectively. A

training and testing fold was selected, and learning rates of 0.05, 0.1,

0.15, 0.2 and 0.25 were tested, with the rate of 0.15 producing the

model with the greatest accuracy. The leaf size specifies the minimum

number of samples required in a leaf, or terminal node. As the classes

are imbalanced, lower values for leaf size were tested. Leaf sizes of

15, 30 and 45 were tested, and a leaf size of 30 produced the model

with the greatest accuracy.
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4.3 | Variable importance

The 41 variables tried were reduced to the 12 most important vari-

ables for each quadrangle. The variables that have the greatest contri-

bution to model accuracy for the Pitts Point quadrangle were the

elevation, slope, slope radius 4 and 8, roughness radius 8, residual

topography radius 150, 500 and 1500 and the vertical distance to

channel network; TWI, and flatness radius 100 and 250. The variables

that have the greatest contribution to model accuracy for the De

Mossville quadrangle were the elevation, slope, slope radius 4, 8 and

16, roughness radius 8 and 16, residual topography radius 50, 500

and 1500, the vertical distance to channel network and flatness radius

50. A distribution of the resulting accuracies using just the important

variables is compared with that from the original classifier in Figure 5.

The mean accuracy using all variables for the Pitts Point and De

Mossville Quadrangles is 0.926 and 0.901, respectively, and the mean

accuracy by using just the most important variables is 0.909 and

0.892. The loss of accuracy then is 0.017 and 0.009, respectively.

4.4 | Probability maps and F1 scores

The most accurate classifier (GBT) with the 12 most important vari-

ables was used to classify all cells in three 1.5 � 1.5 km map areas for

each quadrangle (Figure 1), and a surficial geologic map was produced

using the results. The overall accuracy and F1 scores for each geologic

unit are presented in Tables 7 and 8, and the resulting probability

maps are presented in Figures 6–9, along with the hand-digitized

maps. For comparison, the worst classifier (NB) is also used to classify

Map 1 for each quadrangle (Figures 6 and 8).

4.4.1 | Pitts Point

For the Pitts Point quadrangle, the overall accuracy for Map 1 (just

outside the training area) is 0.816 using the GBT classifier and to

0.684 using the NB classifier (Table 7). The overall accuracy for Map

2 (within the training area) is 0.912, and for Map 3 approximately

4.5 km away from the training area, it is 0.874. F1 scores are above

0.91 in all map areas for the colluvium and are lowest for the fill and

alluvium. The F1 scores for most lithologies are higher in Map 2 than

the other two map areas.

The best classifier (GBT) does an excellent job of mapping the col-

luvium in Map 1 (Figure 6). The boundaries between the terraces and

the colluvium are well-defined and in the correct locations. The

boundary between the lacustrine and alluvial terraces does not

exactly match the boundary in the original map but is reasonably

close. The classifier’s accuracy is weakest where it misclassifies some

of the residuum in the NE quadrant as alluvial terrace 4 and some of

the alluvial terrace 4 as residuum in the SW quadrant. Some of these

areas have lower probability values (shown as lighter colours). In addi-

tion, some areas of the floodplain in the SE quadrant are misclassified

as alluvium, alluvial terrace and fill. One feature not mapped in the

original map, a roadway that trends NW/SE on the east side of

the floodplain, was recognized by the classifier as fill.

The worst performing classifier (NB) also misclassifies the resid-

uum and alluvial terrace. There are extensive areas of the floodplain

that are misclassified as fill and alluvium. Much of the alluvial terrace

1&2 is mapped with low confidence or misclassified as lacustrine ter-

race, and the floodplain is much less extensive than it should be.

The classifications in Map 2 from Pitts Point (Figure 7) are much

more accurate across the board, as would be expected as this map is

F I GU R E 3 Distribution of accuracies for each model tested for the Pitts Point and De Mossville Quadrangles. In both cases, the gradient-
boosted trees model produced the greatest accuracy, and the naïve Bayes model produced the least accurate classifier.
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within the training sample area. The delineation of the colluvium is

excellent, and the boundaries between the lacustrine terraces, alluvial

terraces and floodplain are sharp and in the correct location. The

boundary between alluvial terrace 4 and the colluvium is mostly cor-

rect, though there are small areas where residuum is incorrectly classi-

fied as alluvial terrace 4. While most of the floodplain and alluvium is

accurately mapped, some of the alluvium is misclassified as alluvial

terrace 1&2. One of the alluvial fans (which are grouped together with

alluvium for this study) in the SW quadrant is mapped as alluvium, and

the other is classified as a combination of colluvium and lacustrine ter-

race. The areas of fill in the NW quadrant are roughly identified. Two

isolated remnants of lacustrine terrace preserved in the central area

of the map are partially misclassified as fill.

In Map 3 from Pitts Point (Figure 7), the boundary between the

colluvium and residuum, and the residuum itself, is accurately

delineated. The boundary of the lacustrine terrace and alluvium is

roughly correct in the central part of the map but is misclassified as

alluvium in the northern and southern portions. The areas of collu-

vium accumulation (which are grouped together as colluvium for the

classification) are mapped as a splotchy combination of colluvium and

alluvium. Fill is misclassified as alluvium. The heads of tributaries con-

sisting of alluvium are identified along the eastern edge of the map.

4.4.2 | De Mossville

The overall accuracy for Map 1 in the De Mossville quadrangle (just

outside the training area) is 0.807 using the GBT classifier and 0.708

using the NB classifier (Table 8). The overall accuracy for Map

2 (within the training area) is 0.888; and for Map 3, it is 0.907. F1

F I GU R E 4 Confusion matrices for one training set for the Pitts Point quadrangle using each of the eight ML methods.
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scores are above 0.919 in all map areas for the colluvium using the

GBT model and lowest for the fill. The F1 scores for the residuum and

colluvium are higher in Map 3 than the other two map areas. The F1

scores for the residuum and high-level alluvium are low for Map 2.

The probability maps for Map 1 show that the best classifier

(GBT) does an excellent job of mapping the colluvium (Figure 8). The

lacustrine terrace and all are accurately mapped in much of the map

area, though there is a misclassification as alluvial terrace 1&2 near

the areas of alluvium, and some of the lacustrine terrace is mis-

classified as alluvium. The classifier misclassifies some of the residuum

as high-level alluvium on the ridgetops. Some of the areas of fill in the

SW quadrant have been correctly classified, but larger areas of fill in

the NW quadrant have not been classified correctly, and some areas

of alluvium have been incorrectly classified as fill. Areas of colluvium

accumulation in the SW quadrant have been incorrectly classified as a

combination of lacustrine terrace and alluvium.

The worst performing classifier (NB) produced probability maps

with large areas of such low confidence in the lacustrine terrace area

that they mapped as transparent, though the areas of residuum, collu-

vium and alluvium are roughly correct.

T AB L E 5 F1 scores for each lithologic class for the Pitts Point quadrangle and the overall accuracy for each machine learning model.

Pitts Point
geologic unit

#
samples

Gradient-
boosted trees

Random
Forest

Support vector
machine

Neural
network

Nearest
neighbours

Decision
tree

Logistic
regression

Naïve
Bayes

Residuum 1576 0.950 ± 0.008 0.884

± 0.009

0.914 ± 0.014 0.898

± 0.020

0.845

± 0.011

0.898

± 0.012

0.850

± 0.011

0.823

± 0.012

Colluvium 3696 0.950 ± 0.004 0.921

± 0.004

0.943 ± 0.007 0.939

± 0.005

0.920

± 0.006

0.915

± 0.007

0.926

± 0.004

0.894

± 0.008

Alluvial terrace

3&4

539 0.894 ± 0.025 0.529

± 0.042

0.782 ± 0.063 0.737

± 0.113

0.485

± 0.055

0.777

± 0.022

0.533

± 0.050

0.576

± 0.040

Lacustrine

terraces 1&2

1713 0.941 ± 0.012 0.920

± 0.032

0.904 ± 0.011 0.904

± 0.016

0.804

± 0.033

0.900

± 0.010

0.832

± 0.028

0.864

± 0.009

Alluvial

terraces 1&2

832 0.891 ± 0.036 0.819

± 0.051

0.765 ± 0.043 0.747

± 0.076

0.380

± 0.152

0.782

± 0.047

0.512

± 0.086

0.732

± 0.053

Floodplain 526 0.907 ± 0.020 0.836

± 0.032

0.818 ± 0.034 0.830

± 0.039

0.730

± 0.034

0.820

± 0.028

0.735

± 0.036

0.730

± 0.031

Alluvium 974 0.856 ± 0.014 0.820

± 0.015

0.821 ± 0.018 0.824

± 0.020

0.745

± 0.020

0.751

± 0.032

0.767

± 0.021

0.687

± 0.028

Fill 144 0.473 ± 0.103 0.000

± 0.000

0.427 ± 0.101 0.454

± 0.065

0.111

± 0.069

0.266

± 0.086

0.324

± 0.084

0.208

± 0.081

Overall

Accuracy

10 000 0.926 ± 0.006 0.875

± 0.005

0.890 ± 0.011 0.883

± 0.016

0.814

± 0.016

0.864

± 0.010

0.828

± 0.014

0.811

± 0.007

T AB L E 6 F1 scores for each lithologic class for the De Mossville quadrangle, and the overall accuracy for each machine learning model.

De Mossville
geologic unit

#
samples

Gradient-
boosted trees

Random
Forest

Support vector
machine

Neural
network

Nearest
neighbours

Decision
tree

Logistic
regression

Naïve
Bayes

Residuum 702 0.805 ± 0.024 0.613

± 0.030

0.767 ± 0.025 0.744

± 0.020

0.743

± 0.031

0.659

± 0.032

0.682

± 0.026

0.614

± 0.037

Colluvium 5943 0.942 ± 0.006 0.886

± 0.003

0.938 ± 0.003 0.935

± 0.003

0.931

± 0.004

0.914

± 0.006

0.923

± 0.006

0.891

± 0.009

High-level

alluvium

610 0.854 ± 0.017 0.681

± 0.041

0.826 ± 0.017 0.797

± 0.021

0.796

± 0.030

0.747

± 0.028

0.705

± 0.030

0.694

± 0.034

Alluvial Terraces

3&4

467 0.883 ± 0.021 0.790

± 0.036

0.857 ± 0.029 0.826

± 0.026

0.790

± 0.030

0.790

± 0.028

0.738

± 0.027

0.783

± 0.028

Lacustrine

terraces 1&2

597 0.874 ± 0.022 0.816

± 0.026

0.821 ± 0.033 0.762

± 0.029

0.744

± 0.029

0.784

± 0.036

0.688

± 0.022

0.742

± 0.038

Alluvial terraces

1&2

356 0.868 ± 0.033 0.750

± 0.041

0.770 ± 0.043 0.682

± 0.049

0.644

± 0.024

0.714

± 0.048

0.592

± 0.046

0.677

± 0.043

Floodplain 382 0.938 ± 0.021 0.875

± 0.016

0.917 ± 0.026 0.875

± 0.045

0.838

± 0.040

0.876

± 0.025

0.803

± 0.027

0.792

± 0.038

Alluvium 645 0.862 ± 0.023 0.717

± 0.049

0.826 ± 0.021 0.783

± 0.035

0.732

± 0.031

0.741

± 0.030

0.707

± 0.023

0.644

± 0.028

Fill 298 0.405 ± 0.072 0.000

± 0.000

0.348 ± 0.073 0.293

± 0.071

0.151

± 0.049

0.226

± 0.061

0.217

± 0.063

0.203

± 0.042

Overall Accuracy 10 000 0.901 ± 0.006 0.826

± 0.007

0.883 ± 0.007 0.862

± 0.010

0.853

± 0.008

0.834

± 0.006

0.826

± 0.010

0.787

± 0.011
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In Map 2 from the De Mossville quadrangle (Figure 9), which is

within the training area, the classifications are much more accurate

overall than for Map 1. The delineation of the colluvium and terraces

are well-defined and in the correct location. Some of the high-level

alluvium along the eastern edge of the map has been correctly classi-

fied, but some has been misclassified as residuum. Residuum along

the ridgetops has a gradational contact with the colluvium. The alluvial

terrace 3&4 is roughly correct, though the boundaries may be mis-

classified as lacustrine terrace. Small regions of alluvial terrace 1&2

are correctly mapped. Some of the fill has been correctly classified,

particularly in the NE quadrant along the ridgetops and colluvial val-

leys and the roadway in the SE quadrant but was not recognized

within the terrace area.

In Map 3 from De Mossville (Figure 9), the boundary between the

colluvium and residuum, and the residuum itself, is quite close to

the original map, though the ends of the ridges have a lower

probability of being residuum, and grade into the colluvium. In one

valley in the SW quadrant, the alluvium in the valley bottom is not

recognized by the classifier. Some areas of fill within the colluvial val-

leys are correctly classified but fill but along the ridgetops; there are

some areas that are classified as fill but that were not included on the

original map. There are some areas along the ridgetops that are incor-

rectly classified as high-level alluvium.

5 | DISCUSSION

5.1 | Model performance

The GBT model produced the classifier with the highest overall accu-

racy for each map area and the highest F1 score for each class. While

GBT and the RF methods both utilize independent decision trees,

T AB L E 7 F1 scores for each class and overall accuracy results for the maps in the Pitts Point quadrangle.

Pitts Point

Geologic unit

F1 scores tenfold cross-

validated models

Map 1
(just outside training area)

Map 2
(within training area)

Map 3
(4.5 km distant)

# of
samples

F1 score
GBT

F1 score Naïve
Bayes

# of
samples

F1 score
GBT

# of
samples

F1 score
GBT

Residuum 0.933 ± 0.012 101 846 0.851 0.880 38 197 0.880 18 810 0.874

Colluvium 0.942 ± 0.005 426 752 0.933 0.906 265 195 0.917 656 125 0.936

Alluvial terraces

3&4

0.850 ± 0.043 8166 0.337 0.248 111 024 0.953 0 -

Lacustrine

terraces 1&2

0.927 ± 0.007 152 551 0.806 0.672 256 506 0.957 213 565 0.880

Alluvial terraces

1&2

0.889 ± 0.017 149 391 0.710 0.319 133 296 0.885 0 -

Floodplain 0.894 ± 0.017 129 278 0.706 0.433 109 501 0.904 0 -

Alluvium 0.824 ± 0.017 30 504 0.415 0.209 70 806 0.775 100 549 0.615

Fill 0.400 ± 0.094 1470 0.000 0.022 15 439 0.703 10 933 0.000

Overall accuracy 0.909 ± 0.005 0.816 0.684 0.912 0.874

F I GU R E 5 Accuracy distribution of the gradient-boosted trees model with the original 41 variables and with the 12 most important variables
for the Pitts Point and De Mossville quadrangles.

12 JOHNSON and HANEBERG



GBT uses boosting to combine, or create ensembles of, individual

trees in a sequence, while RF uses individual trees and combines them

in parallel (Dhingra, 2020). Ensemble methods have been shown to

work well with sparse ground-truth data, and it gives robust estimates

of the probability of predicted lithology (Bergen et al., 2019; Kuhn,

Cracknell, & Reading, 2018). In GBT each decision tree is evaluated in

terms of its loss, which is high when the classification and prediction

do not agree, and each new tree corrects the errors of the previous

tree. GBT can thus model more complex relationships and decision

boundaries than a RF model (Friedman, 2001).

The NB model produced the classifier with the lowest overall

accuracy for each map area, and with some exceptions, the lowest F1

scores for each class. The NB model is a probabilistic method based

on Bayes’ theorem, which assumes that all the variables in the data

set are independent of each other and do not affect each other

(i.e., they are naïve). It is a simpler model than either of the ensemble

methods described above. This type of model is often used for things

like spam filtering and recommendation systems (Gandhi, 2018). In

this study, because the variables are not independent but correlate

with each other (e.g., the terraces are at a lower elevation and have

lower roughness than the residuum), this method did not perform as

well as others.

5.2 | Strengths and limitations of machine learning

5.2.1 | Class imbalance

The selection of the training area from which the 10 000 points were

randomly chosen influences the depiction or representation of each

geologic unit and affects the imbalance between the classes. While an

effort was made to include archetypical areas of all map units in the

training area, there is a preponderance of certain units. For example,

in the Pitts Point and De Mossville quadrangles, 37% and 59% of the

sample points, respectively, were colluvium. It is not surprising then

that the colluvium had, with two exceptions, the highest F1 scores in

all maps in both quadrangles (up to 0.936 and 0.962, respectively),

with the lowest F1 score of 0.886 using the worst performing classi-

fier. This study did not attempt to map geologic units with only a small

arial extent, such as the alluvial fans or colluvial accumulation areas, as

these regions were not adequately represented in the training area

data used to build the classifiers. While we addressed class imbalance

through stratified sampling for this study, a future study might include

a different sampling strategy, whereby the number of samples for

each class are balanced. This might take the form of a series of key

map areas with exemplars of each class, instead of a single contiguous

rectangular training area as used in the current study. Another

approach would be to undersample the majority class (i.e., the

colluvium), and duplicate examples, or oversample, from the minority

classes (Brownlee, 2021).

5.2.2 | Ease of classification

In addition to class imbalance having an impact on the ability of ML to

correctly classify units, there may be some units that are easier

to classify than others based on how unique their characteristics are

in the topographic data. For example, colluvium is well recognized by

ML, perhaps not only because it has the greatest representation in the

training data but also because it is found exclusively on slopes, as

opposed to the units found on ridge tops or in the valleys. There is a

persistent confusion between residuum and high-level alluvium and

terrace deposits, which occupy a similar geomorphic position. It may

be that distinguishing between these two deposits is beyond the

capacity allowed by using just topographic information and may need

additional data such as a description of the soil itself, or, as the high-

level alluvium is related to the ancient Teays river system, information

about the location of that system. That fill does not have high F1

scores in any map is not too surprising. While the naturally occurring

surficial geologic units have a particular genesis that defines them, fill

may be placed in a variety of locations that do not conform to a gen-

eral origin, such as roads along ridgetops, terraces or slopes, dams in

T AB L E 8 F1 scores for each class and overall accuracy results for the maps in the De Mossville quadrangle.

De Mossville

Geologic unit

F1 scores tenfold cross-

validated models

Map 1
(just outside training area)

Map 2
(within training area)

Map 3
(6.0 km distant)

# of
samples

F1 score
GBT

F1 score Naïve
Bayes

# of
samples

F1 score
GBT

# of
samples

F1 score
GBT

Residuum 0.806 ± 0.027 18 469 0.725 0.789 39 172 0.645 193 432 0.810

Colluvium 0.940 ± 0.005 451 110 0.919 0.886 492 653 0.936 778 603 0.962

High-level alluvium 0.843 ± 0.040 0 - - 27 939 0.626 0 -

Alluvial terraces

3&4

0.888 ± 0.020 0 - - 57 328 0.800 0 -

Lacustrine terraces

1&2

0.876 ± 0.022 294 286 0.790 0.662 165 953 0.911 0 -

Alluvial terraces

1&2

0.858 ± 0.017 233 0.000 0.000 25 450 0.709 0 -

Floodplain 0.936 ± 0.011 0 - - 78 298 0.944 0 -

Alluvium 0.846 ± 0.020 212 890 0.790 0.733 95 521 0.903 14 400 0.418

Fill 0.398 ± 0.071 23 011 0.151 0.117 17 626 0.304 13 540 0.217

Overall Accuracy 0.892 ± 0.006 0.807 0.708 0.888 0.907
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small valleys in the uplands or lowlands, and as the foundations for

buildings and other infrastructure. However, there are still examples

of locations where fill has been correctly identified, though perhaps

with not a great degree of confidence, but a number of dams and

roads are at least sketchily mapped in the correct locations

(e.g., Figures 8 & 9).

5.2.3 | Topographic control

There is a strong correlation between elevation and the landforms,

with residuum residing solely on ridgetops, lacustrine terraces in the

valley and so on. In addition, the ridges, as they are the remnants of

a plateau, are confined to a small range of elevations. It would be

informative to use this method in an area of more complex and varied

terrain where the elevation does not have as clear a relationship with

the surficial deposits.

5.3 | ML performance in areas of complex and
simple geology

Map areas within the training areas (Map 2 for both quadrangles) have

the highest overall accuracy and F1 scores, as might be expected.

Map 3 in both quadrangles lies 4.5–6.0 km away from the training

area and have a relatively simple geology. The classifier does do an

excellent job mapping the colluvium, residuum and terraces in these

more distant areas, though a poorer job mapping alluvium. Map 3 from

the De Mossville quadrangle has a very high F1 scores for colluvium

of 0.962, and residuum of 0.810, and a much lower F1 score of 0.418

for alluvium. Map 3 from the Pitts Point quadrangle also very high

scores for colluvium (0.936), residuum (0.874) and lacustrine terraces

(0.880), though a much lower F1 score for alluvium (0.615).

Map 1 in both quadrangles lies just outside of the training area

and has a more complex geology than Map 3. The classifier however

does perform well, with overall accuracies of 0.816 and 0.807,

100m

Pitts Point Quadrangle Map 1 N

alluvium (tributaries)

floodplain

alluvial terrace 4

colluvium

alluvial terrace 1

lacustrine terrace 1

residuum

lacustrine terrace 2

alluvial terrace 2

colluvium accumulation

Hand Digitized 
Map Units

fill

alluvial fan

residuum

floodplain

alluvium (tributaries)

colluvium

alluvial terrace 4

lacustrine terraces 1&2

alluvial terraces 1&2

fill

0%        100%

Machine Learning Class 
Probabilities

Hand Digitized MapBest Classifier: Gradient Boosted Trees

Worst Classifier: Naïve Bayes

F I GU R E 6 Map 1 in the Pitts Point quadrangle, which lies just outside of the training area (Figure 1). The best performing classifier (GBT) and
worst performing classifier (naïve Bayes) are compared with the hand-digitized map.
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respectively. While the classifiers do an excellent job on mapping the

colluvium, with F1 scores of 0.933 and 0.919, respectively, F1 scores

drop to 0.851 and 0.725 for residuum, primarily because of mis-

classification as high-level alluvium. Lacustrine terraces 1&2 and

alluvial terraces 1&2 have moderately good F1 scores, of 0.806, 0.710

and 0.790, while the alluvial terraces 3&4 have low F1 scores, of

0.337, likely because they are less well-represented in the data used

to train the model. While some of these lower F1 scores may reflect

100m

Pitts Point Quadrangle, Maps 2 & 3
N

Map 2 Hand Digitized Map 2 Machine Learning

Map 3 Machine Learning Map 3 Hand Digitized 

residuum

floodplain

alluvium (tributaries)

colluvium

alluvial terrace 4

lacustrine terraces 1&2

alluvial terraces 1&2

fill

0%        100%

Machine Learning Class Probabilities

alluvium (tributaries)

floodplain

alluvial terrace 4

colluvium

alluvial terrace 1

lacustrine terrace 1

residuum

lacustrine terrace 2

alluvial terrace 2

colluvium accumulation

Hand Digitized Map Units

fill

alluvial fan

alluvial terrace undifferentiated

F I GU R E 7 Maps 2 and 3 in the Pitts Point quadrangle, which lies within the training area, and 4.5 km away from the training area,
respectively (Figure 1).
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that this classifier is not performing well, it is worth keeping in mind

that the ML maps display this uncertainty and highlight areas where

there is more than one potential geologic interpretation. This may be

very useful for pointing out areas where further investigation is

needed for accurate mapping. Furthermore, it is possible that the ML

maps are picking up on details not noticed during the hand-digitized

mapping process.

5.4 | Mapping uncertainty

An advantage of using ML for mapping is that it communicates the

probability of each geologic unit at every cell and thus communicates

the level of certainty of that classification at every cell. Areas of

uncertainty may coincide with lithologic transitions of key geological

importance (Cracknell & Reading, 2013). For example, most of the

maps in this study show a gradational boundary between the resid-

uum and colluvium, and this might be useful for the user to know so

that this uncertainty could be incorporated into their plan to evaluate

a site for potential slope mitigation. Areas of uncertainty may also

point to areas of real geologic complexity. For example, in Map 3 for

the Pitts Point quad (Figure 7), there are significant areas of colluvium

accumulation, which in this study, we have defined as colluvium. In

these areas, the ML model has classified this as a patchy combination

of colluvium, alluvium and lacustrine terrace. According to the Ken-

tucky Geologic Map Service, colluvium accumulation zones consist of

a combination of colluvium, alluvium, lacustrine deposits, alluvial ter-

races and fans. Thus, the classifier has pointed to the multigenetic ori-

gins of these deposits. Using ML for mapping also eliminates the need

for boundary lines, which are known to have their own uncertainty

issues (Lark et al., 2015). If a boundary between units is desired, the

user could apply a threshold for which a boundary can be applied.

100m

De Mossville Quadrangle Map 1 N

residuum

floodplain

alluvium (tributaries)

colluvium

high-level alluvium

lacustrine terraces 1&2

alluvial terraces 1&2

fill

0%        100%

Machine Learning Class 
Probabilities

alluvial terrace 4

alluvium (tributaries)

floodplain

alluvial terrace 4

colluvium

alluvial terrace 1

lacustrine terrace 1

residuum

lacustrine terrace 2

alluvial terrace 2

colluvium accumulation

Hand Digitized 
Map Units

fill

alluvial fan

high-level alluvium

Hand Digitized MapBest Classifier: Gradient Boosted Trees

Worst Classifier: Naïve Bayes

F I GU R E 8 Map 1 in the De Mossville quadrangle, which lies just outside of the training area. The best performing classifier (GBT) and worst
performing classifier (naïve Bayes) are compared with the hand-digitized map.
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5.5 | Can ML replace human mapping?

For some geologic units, such as the colluvium, ML appears to do an

excellent job of classifying. There are extensive areas outside of the

two quadrangles used in this study, where the geology is dominated

by colluvium and residuum with some valley alluvium and fill. In

these areas of simple geology (i.e., De Mossville Map 3), ML pro-

duced maps with overall accuracies of up to 90.7%. This work

F I GU R E 9 Maps 2 and 3 in the De Mossville quadrangle, which lies within the training area, and 6.0 km away from the training area,
respectively (Figure 1).
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demonstrates the strong potential for ML to quickly create accurate

surficial geologic maps in geologically simple areas that can closely

match human mapping. In more complex areas, particularly where

some units, such as terraces, are not well preserved, or there are

high-level alluvial deposits on the ridgetops, additional information

obtained in the field is necessary. In such areas, ML may not create

an accurate map without additional human mapping but could

instead provide a base map highlighting where areas of geologic

uncertainty lie. There is also the potential for ML performance to be

enhanced by including other data sets such as soil samples, well log

data or remote sensing data, which could help in distinguishing these

geologic units from one another.

5.6 | Future directions

This study used supervised machine learning algorithms, which use

human classifications of geologic units as their basis for measuring

model performance. A future line of inquiry is to use unsupervised

machine learning, in which no classifications are provided, and the

algorithm defines its own classification model. Another line of

inquiry is to train a classifier using samples, which equally sample all

geologic units, thereby eliminating class imbalance, or using an

oversampling/undersampling routine. This may allow smaller features

like alluvial fans and colluvial accumulation zones to be mapped.

However, it may be that some of these features, as they are an

amalgamation of multiple types of deposits, may not be classified

very well in any case. This study relied solely on the digital elevation

model and derivative maps. Other data derived from the original

lidar data, such as lidar intensity, could potentially be used as

variables, along with existing county soils maps, imagery and other

remote sensing data such as synthetic aperture radar (SAR) data.

Additional neural network architectures could be explored, such as

convoluted neural networks (CNN) or recurrent neural networks

(RNN). Furthermore, there is the potential for automatic feature

selection from topographic data using a deep neural network

(Kirkwood, 2022). It would also be useful to examine how well the

models developed in this study might work in areas outside of the

two quadrangles used here.

6 | CONCLUSIONS

This study demonstrates that machine learning can be a valuable

tool for surficial geologic mapping. It can produce a near-final map

in areas of simple geology and a base map where the geology is

more complex. A great benefit in using ML is that the probability

for each geologic unit at every cell in a map can be conveyed. This

can be used to highlight areas where additional fieldwork is required

and also communicate to the end user the real geologic uncertainty

between units. The GBT method produced the best performing clas-

sifier for both map areas tested. It produced very accurate maps of

colluvium but had difficulty distinguishing between some units in

the same topographic position such as residuum and high-level

alluvial deposits. This method has the potential to be useful for

mapping the surficial geology in other regions where lidar data is

available.
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