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Theory 
 
Consider a landscape or geomorphic system in terms of its mass and energy 
throughputs T. The landscape consists of i = 1, 2, . . ., n components, each with 
their own mass and energy inputs and outputs such that T = ∑ Ti. Throughput is 
controlled by inputs (g) and outputs (f) to each component, and changes in 
storage (∆s),  
 
Ti = gi – fi + ∆si          (1) 
 
The proportion of throughput associated with each component (Q) is  
 
Qi = Ti/T          (2) 
 
The maximum uncertainty or complexity of the fluxes in the system can be 
measured using the Shannon entropy: 
 
H = -∑ Qi ln Qi         (3) 
 
The mass and energy fluxes can be divided into external inputs (flows into one 
or more i), external exports (flows from one or more i to the external 
environment), and internal flows between components.  
 



In information theory terms the decrease in uncertainty from knowing the 
external inputs is given by 
 
Io = T ∑ gei Qi ln[gei/(∑ gei Qj)]       (4) 
           i   
 
where gei is the proportion of the input to i coming from outside the system.  
 
A similar consideration of the internal flux exchanges is sometimes termed 
integrality, or when applied to ecosystem studies, mutual independence: 
 
I = T ∑∑ gki Qi ln[gki/(∑ gkj Qj)]       (5) 
           i  k 
 
where gki is the probability that flux at i comes directly from k.  
 
The analog of eq. (4) for exports of usable mass and energy (i.e., excluding 
energy dissipated as heat) is 
 
Ao = T ∑ fje Qi ln[fje/(∑ fei Qj)]       (6) 
             J  
 
The proportion of outflow from component j to the external environment is fje. 
 
If the probability of any quantity of flow leaving component i directly 
contributing to component j is fij, then a measure of mutual sustenance is 
 
A = T ∑∑ fij Qi ln[fij /(∑ fij Qj)]       (7) 
            k  j                               i 
 
Note that equations (5) and (7) differ by their attention to the probability of 
inputs coming from a given component (5), versus the likelihood of outputs 
being directed to a given component (7).  
 
In the ecological literature A is referred to as ascendancy, relating to (for 
example) the complexity and interdependency of ecosystems (e.g. Ulanowicz, 
1980).  
 
The relationship between A and other parameters is  
 
A = H – (S + R + Ao)         (8) 
 
Where S is a measured of unfilled mass/energy flux potential: 
 
S = (I + Io) – (A + Ao)        (9) 
 
R is a measure of redundancy, 
 
R = H – (I + Io)         (10) 
 



These inequalities hold: 
 
H > (I + Io) > (A + Ao) > 0        (11) 
 
From eq. (8) we can see that 
 
ΔA/Δt = ΔH/Δt – ΔS/Δt – ΔR/Δt – ΔAo/Δt      (12) 
 
In a dynamical system, the change in Shannon entropy over time is equal to the 
Kolmogorov entropy,  
 
K = ΔH/Δt          (13) 
 
K-entropy is also the sum of the positive Lyapunov exponents (λ) of a dynamical 
system, where an n-component system has n exponents such that 
λ1 > λ2 > . . . >λν. Because dynamical instability and chaos is indicated by the 
presence on any positive Lyapunov exponent (λ1 > 0), positive K-entropy that 
increases in ascendancy may be associated with dynamical instability. Chaos and 
instability (ΔH/Δt > 0) is not the only way that ascendancy can increase over 
time, as changes in S (unfilled storage/flux potential), R (redundancy) and 
usable exports Ao could be negative. However, this analysis shows how nonlinear 
complexity and divergent evolution (i.e., dynamical instability) may play a role 
in the ascendant development of environmental systems.  
 
 
 
 
 
 
 
 
 
 


